CYS525

Intelligent Ramping
Stepper Motor Controller

JF:CY525MAN. 013 20 September 1991 KM:tr PRINTED IN U.S.A.

Cybernetic Micro Systems software products are copyrighted by and
shall remain the property of Cybernetic Micro Systems, Inc.
Duplication is subject to a license from Cybernetics. Cybernetic
Micro Systems, Inc. reserves the right to make changes in its
products without notice in order to improve design or performance
characteristiecs. Cybernetic Micro Systems, Inc. assumes no
responsibility for the use of any circuitry other than circuitry
embodied in Cybernetic products. No other circuit patent
licenses are implied.

Information furnished by Cyvbernetic Micro Systems, Inc. is
believed to be accurate and reliable. However, no responsibility
is assumed by Cybernetic Micro Systems, Inc. for its use, nor for
any infringements of patents or other rights of third parties
which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of
Cybernetic Micro Systems, Inc. Further, Cybernetic Micro
Systems, Inc. reserves the right to revise this publication and
to make changes from time to time in the content hereof without
obligation to notify any person or organization of such revision
or changes; and Cybernetics assumes no responsibility for any
errors which may appear in this document and makes no commitment
to update the information contained herein.

The following are trademarks of Cybernetic Micro Systems, Inc:

Bin-ASCII
CYMPL
Analog-ASCII
ASCII-Analog

Copyright 1984 by CYBERNETIC MICRO SYSTEMS, INC.
All rights reserved; no part of this publication may
be reproduced without the prior written permission of

Cybernetic Micro Svstems, Inc.

Box 3000 « San Gregorio CA 84074 USA

Tel: 650-728-3000 « Fax: 650-726-3003
wiwe, CordrolChips.cam
info@CantrelChips.com

INTELLIGENT RAMPING
STEPPER MOTOR CONTROLLER

The CY525 intelligent ramping stepper motor cantroller is a
standard 5 volt, 40 pin LS| device configured to control any 4-
phase stepper motor. The CY525 will interface to any computer
using parallel TTL input and provides numerous TTL inputs and

cutputs for auxiliary control and interfacing, The CY525 allows sequences of

hi-level type commands to be stored internally in a program buffer and be executed
upon command. The TTL outputs sequence the stepper drive circuits that consist of stan-
dard powertransistors ortransistor arrays. The CY525 features the ability to change the step-
ping rate while the motor is stepping and to take an unlimited number of steps in continuous

run made.
STANDARD FEATURES
@ FProgrammable via ASCI kevboard ® Two Inlerrupt request ocutputs
® A5C1-Decimal ar Binary communication ® Frogrammable Quiput ling
® Single 5 voll power supply ® Programmatle Dalay
® 27 hi-level language commands ® verify Reqister/Bufler contents
® Stored Program capabo by (80 oytes) ® Several syno nputs and outputs
® Linear Acceleratian, definable ® Aborl capability
® Change Rates while stepping ® Sep Inhibil operation
@ Read Fasdion an-the-fly ® Anility to turn off phases
® 10,000 sleps per second (1 MHZz x1al) & Slewing indicaticn gutput
® spsolute/Relative positicn modes ® "Oowhile” and “Wail Unlil” commands
® Define startirng rate and Slew rate ® “Jump to” command
® Ramp-up/Slew/Ramp-down @ Loop command with repatition count
® Hardware ar software StartyStop ® Allows Address Labels for Loop and Jump commands
® Software Direction contral ® Unlimited numbear of steps in Continuous made

PIN CONFIGURATION LOGIC DIAGRAM

—_r e,
!0 BEQUEST = 1 : A0 p— 5 v0LTS 4 +5VOLT
L [gl — 110 SELECT PARALLEL /0 <!
—] fa— waiT PROGRAN DATA BUS STEPOER
RESET —i _ | moToN COMPLETE 70 FEDUEET 4 0l
wises | CY525 [iscum e)i
ABDAT —= it e PULSE INSTROBE ~a—f-2 = PULGE
— b PROGAAMMABLE OUTRUT TUTSTAGAE -l —
NSTROZE] e Dimecnion TR —a e ["
UNLSED — = BOR(INT AEC 2 : | DIRECTION
CUTSTROBE —=— . Jue FEOGILIVE BUST/READY —— | ok ramin TR
CLK/15 - — STEP INRIBIT A5G AT —pae | [CrEL roamer) [IMDTIDH COMPLETE
DBy] e SLEW R A i = a 14T REQ 2(AUN)
081 e INTELLIGENT Lo popie VOSELEGT — e] (aame e _"‘Pﬁ:uﬁnm COMPLETE
02 -wed AAMPING L o ETEVREADY DO-WHILE —tme | [FESG] || st | f—= FROG ENTRY
DE: =saef = STEPPER = fea—+5vOLTS ABDAT g i BORE | - cTaL
i Fg—— MOTOR — UNUSED . b DT =
STEFINHIBIT ——f-= I
0B85 = CONTROLLER ™ STEPPER o | PROGRAMMABLE
085 o] | MOTOR WAITUNTIL —p- | 1 TR BUTPUT
DET e : o e[DANE LIVE —fw | [[aEnEe
120 21 p—==% | SIGNALS i

Cybernetic Micro Systems

TABLE OF CONTENTS

SECTION 1

INTRODUCTION TO THE CY¥525
History of Stepper Control........... T 5
On-Chip Program S5tOrage....cees.. P es st e rerr s veead
Conditional TesStS..iu.eivererasansanes s e s s rnaann s sevand
Intelligent Motion Control....e e eesenssassss . 7
Independent vs Closely Coupled CONErol....eeeesecssncenonns 11
ASCII Mode for Simple ProtOtypPiNg..ie i enrenssnsnnnnns 12
Stored Program Peripheral Controller.....oeeeesensessannsas 13
Architecture of the CY525 Stepper Controller.cieiececeseees 14
Absolute vs. Relative POSIitLiONeieiieersnnssnssnsscnscasenns 15

SECTION 2

OVERVIEW OF PIN FUNCTIONS
Communication wWith C¥5 25 iiiiiiieenenrnasnassanaconosnsennnns 16
Keyboard Programmable DevViCC.iiiiiiciietecensnsesnnsnaannnns 16
Synchronization Mechanisms........ Ceemmammammsaa it 17
CY525 PINOULt DiaGgC Al ceueeracesonsonnnanssannsasasssassnsnsnss 18
CY525 Pin DesCriptiomueceeeeeirenenrescncsnnenaseanonsananns 20
CY525 Motion Status Signals...... P s e s s aEm sy es s 22

SECTION 3

OVERVIEW OF CYS525 COMMAND LANGUAGE
"Bin-ASCII" FeatUre..ueeeseees e tssrernennanns resramrrrean 24
High-Level Language Design Facilitates Programming......... 25
CY525 COMMANd SUMMAE Y oussscanonssnnanssnssnncsnncsssonsasss 26
Description of Commands .v.eveereeeaess st ssstesansanannans 27
summary of Differences Between CY512 and CY525. . ueeerenns 33

SECTION 4

DETAILED EXAMPLES OF COMMANDS
Eeset Command (Initialize) cieeeeessesconcannrnnonsnnannnsss 36
Program Execution Mode: "Run" mode oOperatioN...eeeseesscess 36
Absolute POSItiON...eeeeeenetnosnansessansnsenennnansnsness 36
Program Looping, IteratioN.e.ececec.. sessseamTasantanannas rees3B
The Jump CommMand. ..eeeeesessnssss tsssrernnaansrassarrrranas 39
Welding Machine EXamMPle civeveeresrnenensns ttessssarannannsas 40

SECTION 5

BINARY DATA MODE OF C¥525 OPERATION
BiNAry Data MOGE iueeueernenrneeennneeonsnaesseaseeneonennsns 432
Internal Program StOrage ..oveeeee.. BhesEsEEEEEEEE ARt e Ea e 44
Interface EXamMpPle ciseeiieccocnnosnnnaana sesatrssaEnanmnnnan 46

SECTION b
READ-OUT OPERATIONS OF THE CY525

Verify Mode OperatioON.icicesessesssssesssncsnanas ErssEesninn 47
Reading Position "on-=the=fly"..ii.ieetienrenrennnneansaneenens 50
Circuit to Latch Position On—the-Flv....eeeeeessccccsnonens 51
Latch Control Signals for reading on-the-flv......coiivunn. 53

SECTION 7

CY¥Y525 TIMING AND CONTROL INFORMATION
CY525 Handshake Timing InformatioN.ciiceceeerscsssssescnnas 54
CY¥525 Interface Timing..... s re s e s s EaE R s R e . 55
Step InNhibit Piluiecesesseesassosesssosssnssassansasssssasnasas 59
Direction CoONEtroOl seieieeeenrannsanosnansassasnnnns Trtersanne 59
Live Commands (While a Program is EXeCUting) «veeeeeeneenens 60
Continuous Step (Halt Mode) operatiOnN......eeeen.. res e s 6l
Wrap around Position (over 64K steps of Travel)oeeeenn. 62
Abort Operation...... RN e S e e TR e e e e AN B N R R N A ke 62
Abort Related Signals.....cavess fe s s aETaaarEaa s .66
The Slew 1ine....iciieeeeeieeeecesceecensessssnsnnanssnnnsns 67
Slew Operation in Continuous MoOde. .weeeeeeeensrroonmnmnensss 68
Rate Changes "on—the—fly ittt ineerennnnssssnannssnsnsss 68
Abort from Zero Slew RAbB..uesesessssscssasescrmanssannnnns 75
Operational MOde SUMMALY . seeoseneenrnnnsnsnnnnnes sessesens 75
Phase Signals....eeeeceeaees e e b s s s s R s EE e s e e rar s 76

SECTION B

CY¥52Z5 STEP RATE INFORMATICN
5lOpE PALAME L u ittt st s oesnansnsnasassssasssscsnnmennsanssssass 77
Optimal Acceleration CULVES..eeweecanns feerarr s e 78
CYEZ25 Slope CULVES. et wenesss St e s s s E R e R E e St eareanaa 83
Slope DiviSOr..ieeswsennacnnnnss e a s b rer s E st e 85
Rate TableS. ... ssrnnrnnnsassannnns P e et datiaaaanananass 26
Step Timing Signals...... tessure s v ana ey s 87

SECTION 9

C¥525 ELECTRICAL SPECIFICATIONS
Operating Characteristics cveeeeenes tererarrseran R n Ry 50
Electrical ConventionS........ P A e E st e i e s R e R R R e e 80
Feset Clrocuiltrv.eeereeananes P et a T s e R AR A e A e b 81
Clock CircuitsS eeeenecaasns P iesedissasanmaaansa s - 891

SECTION 10

MISCELLANEOQUS CIRCUITS AND EXAMPLES
CY51 2/ Kit. e eeeeennensannnnssnnnsnnnnses e 892
Test Demonstration Cilrcuit . ciiieeereesnasancnsssaseannnrsnnnns 83
CYB-002 MUulti-PUurposSe BOArd...eeeeeceecssssenassenesss ses..24
Driver Circuit ConsiderationS........e.. P rR ALt e s s s bennnan 95
Handshake ProtoCol iieiieieieciccnncsoannsnasnasnasnnsns - X -1
Operation of Several CY525s Using a Common Data BuS........ 95
Synchronization of Two CY¥525s..... tatessnnanaanmresnnnanas 100

Coordination of Several CY¥5258. .. .0, G h e r e e e 101

Example Programs and WavelormS..ue e s s e eeni et ennnnnannnnsns 1az
R5-232-C Receive Only Interface DeSigN .iesevevescessessens 105
RS-232-C Transmit/Receive Interface with C¥232............ 107
Prom Stand-alone Interface Design.ieiciicceeevecensnronnas 108
EEPROM Stand-alone Interface DeSign..e.eeeeeerennnnnnncsness 110
SECTION 11
COMPUTER CONTROL OF C¥525
Computer Contreol of CYS525........ sesbtennannanas resstesnns 111
Enter/Quit Programming Mode......eeeeeess S as s +.111
CY525 Stand-alone ApPPliCationS.eeeeeeeececeoeenonsesnnenns 112
Programming Examples.......... Vb b e re e E et rrE e e 113
Equate Table for Programming EXampPleS. ceeeeeessconeeneensnns 114
Binary Data Programming EXampPle.o eeececeeoeneresnnsensn 115
Handshake SuUbroutine.......eiiiiieiteennernenncnecnennnnnens 116
ASCII Data Programming EXample.....eeeessss. ses v s naaaas L117
Oscilliscope Display EXamMPle..v.eeeeesseseeseneescasesesnes 118
SECTION 12
IEEE-488 INTERFACE TO CY525
IEEE_48‘8 Interface ------------ B oRE M MW E RS RS E AR RS SRR EESEEE llg
GPIB Handshake Signals tiieieeeeesesncssosecoonnrsasrsnnnns 119
GPIB Interface Management SignalsS.cieceresssesscecccnsesss 121
GPIB SChematic EXampPle. .. eeeneensnsesnnnnansnsnnnsenesns 123
SECTION 13
GETTING YOUR CY525 RUNNING
StArt—Up PrOCEdUL B u s s tesseennansssncseseenensscssnsennnsns 127
APPENDICES
CY500 Data Sheet.ttt ettt netneennnnssasenneens 129
CY¥512 Data Sheet.ttt ii ittt r s s nsesesnnsneenennens 130
ASCII Decimal to HEX Conversion Table....w.eveeeeeeeeennnss 131
Stepper Motor Controller Selection Guide..........evuuuu.. 132
4-Phase Stepping Motor Manufacturers...........c..eeveeen.. BC

1 INTRODUCTIONTOTHECY525 1

HISTORY OF STEPPER CONTROL
Boxes to Boards to Chips

The first stepper motor controllers congisted of bulky boxes
controlled by switches and buttons. Step rates were set in
hardware, as were the acceleration and deceleration
characteristics. Switches were used to set the number of steps
and direction of stepping. Buttons were used to actually start
the motion. These controllers were obviously meant for manual
operation. They were very expensive, very heavy, and very large
when compared to the motors to be controlled.

In the next stage of controller design, the functions of the
controller boxes were designed onto single PC boards. These
significantly reduced the cost and packaging requirements, but
did not increase the capability of the controller. One important
benefit of this design was the ability to simulate switch inputs
electronically, allowing another machine to command the
controller.

_ |
Figure 1.1 Controller evolution, boxes to boards to chips.

About this time the low cost computer came into fashion. It
became a natural source of input signals to run the stepper motor
controller, providing a pulse train to the translator module. If
the loading of the motor was such that acceleration and
deceleration was required, then the computer provided the timing
of the pulses to affect the acceleration. If, further, the
position control required complex motions that were relative to
either the current location or to some absolute coordinate
system, then the computer also provided these calculations. If
the seguence of motions was to be synchronized with other
external events, the computer provided such synchronization.

At this point, the control of motion became a non-trivial
problem, and the programming of a computer to provide this
control represented a major design effort. If not one, but many,
motors were to be controlled, the problem became even worse, and
quickly exceeded the capabilities of the low cost computer.

In 1979 Cybernetic Micro Systems introduced the first infelligent
single chip Stepper Motor Controller . +he CY500
In the early days of microprocessors, it was generally true that
motor experts were not computer experts, and vice versa. Thus

the primary rationale behind the CY500 was to provide an
interface chip and to say to both sets of experts:

"Hook your computer here, and your stepper drivers here.”

WRITE .

ETTTT i
- ——— BUSY/RDY - ;
IHeleYe Wi G .

-~ _____J"N _..I-_fr - "
i ¢z - -~
= E *! [——

’¢‘ s

Figure 1.2 The CY500 was the first single chip controller that
provided all the functions necessary for high level
control of stepper motors (introduced 1979).

In addition to a simple interface, the CY500 also offered high
level functions designed for precision positioning, specifically,
the ability to move a specified number of steps (relative move)
and also the ability to move to a specified location (absolute
move). Thus the user could tell the CY500 to:

"take n steps" { 0 <= n < B4K)

ar .
"go to position P" (0 < P < 64K)

In order to allow easy use with high level components (keyboards
& displays) and high level languages like BASIC, the CYS500
accepted ASCII commands and ASCII-decimal walues. The commands
consist of a single alphabetic character followed by a decimal
number if applicable. For example, the command to step to
position 36003 is sent to the CY500 as

P 36003)
where) 15 the ASBCII carriage return character,) = fDh.
For convenient interface to machine language or binarv arithmetic

systems, the CY500 also accepts binary values for parameters if
the ASCII/Bin pin is held low.

Program Storage on Chip

As powerful as the high level commands are, it is always possible
to achieve even more powerful control via a sequence of commands
with conditional branching. In order to accomodate such a
sequence, the CY5xx Stepper Control chips provide "on chip"
program storage, capable of storing from ten to fifty
instructions, depending upon the chip and the instructions. This
allows the user to write programs that perform tests and react
appropriately.

Conditional Tests

Because of the nature of most stepper applications, emphasis has
been placed on testing external events (as opposed to testing the
results of internal calculations, as is done in general purpose
computers.) Thus the CY¥5xx devices can:

l. Loop til an external event occurs
2. Wait for an external event to occur.
3. Loop for a specified count of events

In addition to sensing external signals, the CY5xx controllers
also generate both specific and general purpose control signals
to be used by external subsystems. The ability to sense, signal,
and synchronize, provides a very powerful subsystem "building
block" for systems involving motion.

Intelligent Motion Control

Although stepper motors may operate with considerable angular
velocity or step rate, most of them must begin (and end) stepping
at a low step rate. Thus a high level controller should provide
acceleration and deceleration, and this should be generally
transparent to the user.

By "transparent to the user"™ we mean that the controller should
determine when to stop accelerating and also when to begin
decelerating to stop at the desired position. The CY500 allows a
"slope" parameter to specify the acceleration.

STEF

. T T MAYN!MUM RATE
RaTE

ACCELERATION

e STARTING RATE

1 I o POSITION
START FIMISH 0% TimE
003

Figure 1.3 Illustrating a typical move for a stepper motor when a
position command is given to the CYS500.

Finally almost all stepper motors are used as system elements and
it is often desirable to synchronize instructions with input and
cutput lines for easy TTL interfacing.

As the first intelligent stepper motor controller, the CYS500 was
well received by customers and won a "Product of the Year" award
from Electronic Products Magazine in 1980. However, as is the
case with most first products, the CY500 was not perfect.
Although it had been designed with precision control of
positioning in mind, many users wanted faster stepping. The
C¥500 would step at 3360 steps/sec.

Thus in 1981, Cybernetics introduced the first second-generation
Stepper motor controller, the CY512. The CY¥512 was 90% pin- and
instruction-compatible with the CY500 but offered new features:

®» [First, the C¥512 was faster than the CY500. With the use of
feedback, the CY¥512 would step almost 8000 steps/sec.
Without feedback, the CY¥512 would step approximately 5000
steps/sec.

@ Scecond, the C¥512 could be gueried. For example, the user
could ask the CY512 for its position and receive the answer
as either a 1l6-bit binary number or a 5 digit decimal
position. The user could alsc examine the CY51l2 parameters
such as slope, rate, etc.

® Third, the CY31l2 could determine the direction (CW/CCHW) it
must move to go from its current (arbitrary) positicn to a
specified target position, unlike the CY500 which must be
"pointed" in the right direction before the position command

was executed. Also unlike the CY500, the C¥512 exhibits its
internal direction on an external pin.

® Fourth, a "Loop count" instruction was implemented in the
C¥512 and its I/0 structure generalized somewhat.

These changes were welcomed and most users select the higher cost
CY512 over the CY500 because it offers better wvalue.

However...

As proud as we were of the CY512 and as happy as most users were,
we s5till had numerous customers who wanted:

1. 5till faster rates, up to 10K steps/sec.
2. More linear ramp (related to faster)

3. Unlimited stepping

4. More complex rate curves.

5. Miscellaneous other reguests.

Each of these will be discussed briefly:

l. Faster....with the emphasis on productivity, many people need
not only intelligent, easy-to-control motion, but FAST
motion. The realistic upper limit of the C¥512 was 5K
steps/sec, while many motors will go 10K steps/sec (many will
not!}).

2. More linear RAMP....This feature really relates to usable
speed. The CY512 would step at up to 8000 steps/sec, but
most motors would not accelerate fast enough to keep up with
the CY512. The reason for this 1is the non-linear
acceleration curve of the CY512.

SPEED

4 S CIT -

-
ACCELERATION -
- % IDEAL
s ACCELERATION

-
-~

-

IME

II'

3. Unlimited stepping......64K steps of travel is not enough for
some people, so this limit in the C¥512 forced such
applications to take multiple moves with automatic
acceleration for each move.

1DEAL
SPEED e e et P g
[/ Ne=N \
t + ¢ = DISTANCE
A K 128K 140 K,
TARGET

4. As applications become more sophisticated, many people need
velocity curves of the type shown below:

Yy —-

RUETYES ST -
— S o TIWE

5. Finally, there were numerous miscellaneous reguests such as
the ability to turn off all phases without altering any
internal parameters, etc.

The response to this market feedback is described next:

THE CY525 INTELLIGENT RAMPING
STEPPER MOTOR CONTROLLER

The Third Generation Stepper Motor Controller

First - it is FASTER - a true 10000 steps/sec (@l1.37MHz)
Second - it is LINEAR (that's how we got it to go faster!)
CY¥525 ACCELERATION
IDEAL ACCELERATION
Third - You can change rates-on-the-fly!

Fourth - You can take an unlimited number of steps - run FOREVER!

Fifth - You can read out (binary) position-on-the-fly, that 1is,
you can ask the CY¥525 where it is, while it's stepping!

Sixth, Seventh, Eighth, etc.-Of course we allow vou to turn the
phases off (with or without a pulse) and have cleaned up
other features (to allow use with slow BASIC
interpreters whose tardy write strobes once terminated
C¥512 stepping). And we now let you use labels in a
program so you won't have to count bytes for jumping,
looping, ete.

Last - from R = 3 to R = 40, the rates are specified in units
of 100 steps/sec. Thus to go 300 steps/sec (@11MHz) the
user specifies R = 3; to go 2900 steps/sec, the user

specifies R = 29 etc. Above R=40 (4000 steps/sec) the
rates change by approximately 60 steps/sec per rate
increment.

As the final feature, the CY525 can be plugged into Your present
CY512 socket and it will work. Of course to take full advantage
of the "on-the-fly" features you will need two latches, ete., but
if you just want to go faster and smoother, just pull ocut the
C¥312 and slip in the CY¥525! (note: see ABORT changes.. page 63).

That's the brief history of single chip intelligent motor control
from the CY500 in 1979 to the C¥512 in 1981 and the C¥525 in
1984. Of course we have been busy offering a variety of sSupport
chips and circuits such as the CY512/Kit prototyping board, the
CYB-002 prototyping kit capable of controlling two CY¥525s, and
the CYB232 board that allows up to 255 stepper motors to be
controlled over one serial RS232 line.

r .
AND we have software for the IBM-PC and XT! ! LL

10

Two Primary Modes: Independent vs Closely Coupled

The CY525 can be operated in two primary modes (although the
modes can be mixed.) The first is the "independent” mode and is
identical to the CY500 and CY512 operation. In this mode the
parameters are specified and then a motion command is issued or a
program of instructions i1s executed. The interaction of the
controller with the master computer is typically limited to
signaling either:

1. the motion is complete, or
2. the program has terminated.

This high level control relieves the master computer of worrying
about the details of the motion or motion seguence.

The CY525 offers a second, "closely coupled" mode of operation
that provides extreme flexibility at the expense of some
attention on the part of the master computer. This mode provides
the ability to change the step rate "on the fly" and to read the
current position "on the fly", i.e., while the motor is stepping.
An example of the motion that is possible in this mode is shown
in the figure below.

I
T

10,000
STEP/SEL

INITIAL [77

300 L ' ——
STEFSSEC 5T0P STAET FIMISH
1 I |

UNLIMITED 4 OF STEPS

Figure 1.4 Example of complex motion possible in "closely
coupled" mode of operation.

NOTE: Although it is possible to mix the two primary modes of
operation, this should be done with caution. The two modes are
designed to be consistent and coherent as separate modes and
there are some inconsistencies that result when mixing the modes.
These do not prevent useful mixtures, but reguire understanding
of the differences for successful execution. For example,
attention should be given to both the SLEW line and the ABORT
line when mixing the modes.

11

g S D O W

[

| MASTER

DATA BUS

. RUN
a.) PROGLINE
SLEW
WALT
Doy HILE.
b.} MOTIDN COMPLETE
44 SELECT
STEP INHIBIT

Figure 1.5 The CY525 can operate in two primary modes:

a2.) "Independent" mode in which commands and programs
execute in the CY¥525 independently of the master
computer.

b.) "Closely Coupled" mode in which the master computer

closely interacts with the CY525 while it is executing
commands and programs.

€.} These modes can be mixed, with care.

ASCII Mode Allows Simple Prototyping

The CY525 is an ASCII-programmable, peripheral controller chip
designed to control stepper motors using an instruction sequence
that may be stored internally in a program buffer. This feature
allows the user to program the device with an ASCII kevboard and
vastly simplifies prototype development and experimentation. When
the user decides that the control sequence is correct, the ASCIT
keyboard is replaced by a computer output port, and the motor
can be brought on-line. Of course, the computer can be used
initially in those systems in which keyboard programming is
impractical, but most applications can usually benefit from the
immediacy of the keyboard during the development phase. In this
mode the user simply types a command on the keyboard and the
controller takes the appropriate action. In the Command Mode, the
controller simply executes the command. In the Programming Mode,
the command is stored in sequence in the on-chip program buffer
for later execution.

12

Stored Program Peripheral Controller

The Cybernetic Micro Systems C¥525 Intelligent Ramping Stepper
Motor Controller offers the user stored program capability. This
feature significantly increases the power of the device and, as a
consequence, decreases the amount of host time and software
required to perform a given task. Stored program devices operate
in three basic modes:

R s e R R R R E E E R R T R R R FERET L S PTEERE]

Command execution mode

The CY525 executes commands as ;
they are received. :

A DR

Program entry mode

R i

The CY¥525 stores commands in an
internal program buffer for
later execution.

R e e

Program execution mode

S T L

The C¥525 executes the commands
that were previously stored in ;
the program buffer. :
;
N N R e T T T

e T D

Thus, in addition to the Command Execution mode common to all
peripheral controllers, the stored program controller can be
placed in a Program Entry mode in which the sequence of commands
is entered and stored in the program buffer, and then the device
can be placed in the Program Execution mode in which stored
seguences of commands are executed.

In many applications the user will find that the CY¥525 can
function as a stand-alone device, completely independent of the
host processor, except for program loading. 1In most of these
applications, it may be possible to generate custom devices that
load the desired program upon power-up and are triggered by
external hardware. The user can then employ these custom
controllers in stand-alone applications with no host. See PROM
Stand-alone example in Section 10.

13

ARCHITECTURE OF THE CY525
STEPPER CONTROLLER

The CY¥5Z5 architecture
may be partitioned BIDIRECTIONAL TO STEFPEE, MOTOR
into sewveral func- PARMLLEL DRIVE TRAMSISTORS

1 DATA BUS
tional subsystems: i 1f”ﬂ“xh

1. Input data fqrsiﬂh =k
subsystem iaih ru & W L:

| K INPUT DATA OUTPUT REGISTER

2. Output data i e ¥
subsvystem @ T6- stmPCmme

3. Program para-— G |6'BIT POSITION HRESISTER]
meter stor = et e e - ~

a9e i E:I RATE] E] FIRST RATE]

4. 1;:&3: flags and o LJ == = E::I —= =

- Ll S

5. Program storage i MODE FLAGS

buffer, 60 bytes B PROGRAM BUFFER
. it BYTE @

6. Instruction | rrocram romTeR PR BYTE |
selection, i ; BYTE 2
decoding, | Y |)
and control 1500 I ”ﬁgﬂgnf” :
mechanisms. 1 Bl ECONTROL : z

P _Z_E SUBSYETEM i BYTE 53

7. Position Lt

Register

Figure 1.6 Schematic diagram of the
architecture of the C¥525 Intelligent
Ramping Stepper Motor Controller.

Input and Output Data Subsystems

The input data subsystem accepts commands and the output data
subsystem holds the output control signals to the stepper drive
circuitry and includes the associated direction and pulse timing
lines.

Program Parameter Storage

The program parameter storage subsystem is used to store the step
rate parameters, ramp rate parameter, and to maintain a l1é6-bit
position register. The position register is incremented (or
decremented) when stepping in the clockwise (or CCW) direction.
The position register is used when absolute position commands are
specified. The 16-bit step counter is used when relatiwve
commands are employed. The contents of the position register
change with every step, while the step counter register contents
remain unchanged until a specific command is used to change them.

14

Mode Flags and Pins

The mode flags and mode select pins are used during command
execution to perform the appropriate action or to interpret data
or input signals correctly.

Program Storage Buffer

The CY525 contains a program buffer that allows the user to store
a seguence of instructions that can be executed upon command.
This provides all of the benefits of stored program execution
that have made computers such powerful tools.

Instruction Decoding and Control

This subsystem performs the actual execution of commands.

Position Register

The CY525 contains a 16-bit position register that can be read to
determine the current location. The CY525 will accept relative
and absolute position commands; however, the position register
always indicates absolute position. In the C¥525, this register
can be read while the C¥525 is stepping.

Absolute vs Relative Position

The G command operates in the relative position mode, in which
total travel is specified relative to the current position via
the Number (of steps) command, N n), where 0 < n < 65535. 1In
this mode an internal counter is decremented for each step and
stepping continues until the count reaches zero (or another Halt
condition is detected). If the Position mode command, P p), is
received, the target position "p" is interpreted as absolute
position with respect to the zero location declared by the Athome
command. The CY525 calculates the stepping direction and the
number of steps to take to reach the specified target position.

1. The relative mode is selected by the G command.
2. The absclute mode is selected by the P command.

When an actual stepping operation is in progress, both a number
of steps wvalue and a target position are used to internally
execute the step command. The current position register is
updated in both the relative and absolute modes, so motions may
be mixed between the modes. In relative mode, the target
position will be calculated, and in absolute mode, the number of
steps to take will be calculated. After that, the two modes use
the same internal stepping routines. Acoceleration and
deceleration work in both stepping modes, with the CY¥525 also
calculating the position at which to start deceleration in order
to return to the starting step rate when the motion is completed.

15

2 2

OVERVIEW OF PIN FUNCTIONS

COMMUNICATION WITH CY525

Commands can be issued to the CY¥525 using a parallel data format.
In parallel operation, complete handshaking coperation occurs via
the use of a Busy/Ready line on the CY¥525, and the I/0 Reguest

strobe line from the host. The handshake protocol is shown below.

Data to CY525
from Master

Master Write
Signal to C¥525

Data Bus
from Master

I1/0 Regquest
from Master

VALID DATA
ON DATA BUS

(=N
- _[)

Handshaking protocol for CY525 parallel input.

Stepper Ready
pin to Master

Busy/RAdy
from CY525

Figure 2.1

KEYBOARD PROGRAMMABLE DEVICE

The CY525 Stepper Motor Controller offers Hi-Level Language
programming with an ASCII keyboard. This design allows the user
maximum utility via the closest possible coupling and facilitates
interactive prototype development and debugging. Note that the
stored program capability makes it possible in many cases to
perfect the operation of the stepper motor completely decoupled
from the host computer. In such cases, the host processor is
reguired to do little more than lcad the programs at appropriate
times. Of particular importance in many applications is the
dynamic stability of the system. By programming a range of test
conditions through the keyboard, the designer may exercise the
system over broad ranges and thus characterize the system
dynamically. Of course, any designer with access to an easy-to-
use, interactive host computer can achieve everything that the
keyboard user can, and more. Lacking such systems, the designer
will appreciate the extreme power of keyboard programming during
prototyping phases, thus postponing until final systems
integration the slower, costlier, host computer programming
associated with all host-controlled controller devices.
el

cCY525 ///fﬂﬂﬁ
! -\

STEPPER
¥OTOA
COHTROLLER |

4 F=ASE
STEFSER
RCTOR

A5C1-DECIMAL DATA SUS

Al

o
To] .
T

Faoa

TR J

(2R E':'."l...ll'i'.] |

ETROBE

CAWER WOLTAGE 4 /
Development System.

Figure 2,2

Simplest Prototype

l6

SYNCHRONIZATION MECHANISMS

Most stepper motors are employed as parts of functional systems.
These systems often must synchronize the behavior of the various
subsystems to each other or to a real-world occurrence, such as
an operator input. The CY¥525 has been designed with both signal
emitters and detectors to allow easy synchronization of the
device to neighboring (interacting) subsystems.

The motor interface for the CY525 is very simple, consisting of
six output signals. Since the controller is designed for four
phase motors, there is a signal line for each phase. The
patterns necessary to operate the motor, including segquencing for
proper direction, appear on the phase outputs. A simple L/R type
driving circuit may be connected directly to the phase outputs,
so the motor can be run from the controller =signals.
Alternatively, the user could drive a more sophisticated pulse-
to-step translator, using the CY¥525 Pulse and Direction outputs.
The Pulse line gives one pulse at the beginning of each step,
while the Direction line always indicates the current stepping
direction.

niRecTION

Figure 2.3 Motor Interface

The computer or data interface of the CY¥525 is also very simple.
Commands and parameters are passed from the command source to the
CY¥525 on an eight bit, bidirectional data bus. Direction of data
is determined by the level on the I/0 Select line, allowing the
CY525 to not only receive commands, but alsc to be interrogated
for the current values of its parameters and contents of the
program buffer. Data transfer between the command source and the
C¥525 1is controlled by a standard two-line handshake protocol.
The master processor waits for the CY525 Busy/Ready line to go
high, indicating that the CY¥525 is ready for the next command
byte. Data may then be placed on the bus, and data available is
indicated by a high-to-low transition of I/0 Request. Data
should remain stable until the CY¥525 indicates data accepted by a
high-to-low transition of the Busy/Ready line. During this busy
time, the CY525 is processing the character just received. The
master processor should then raise I/0 Reguest and wait until the
C¥545 1is ready for the next data byte. Data transfers from the
C¥525 to the master processor are handled in a similar way, with
the master requesting the next byte using I/0 Request, and the

17

C¥525 indicating data available using Busy/Ready. The simplicity
of the data transfer handshake, combined with the ASCII command
structure of the C¥525, allows the commanding device to be any of
a number of things, including a microprocessor or other computer,
a kevboard for manual command entry, or a ROM for fixed, stand-
alone applications. The keyboard is especially useful during
prototype development or system characterization.

TR k so:>;‘a.<
10 SEL . DATABUS e oN DATA BUS st
O RER —— el -
y /0 REG { ("'l"\ ,-'j“-\\
BUSY/RDY =—] = y [Y) \
— Ce——— -
DB e f _ BUSY/RDY I \~p1/f [

Figure 2.4 Data interface and handshake waveform

Since most stepper motors are parts of functional systems,
reguiring that various parts of the system stay synchreonized with
each other, the CY¥525 has been designed with a number of
secondary input and output control lines. These signals may be
used to modify and control the stepping behavior of the device,
or indicate certain conditions within the controller. Two inputs
control the stepping behavior directly. While Step Inhibit is
high, the controller will not step. Stepping is resumed when the
signal goes low again. This signal may be used to halt a motion
under emergency conditions, or to slow the step rate if the motor
cannot keep up. The Abort signal is used to cause a deceleration
to the starting rate {(aAbort), at which point the motion may be
stopped. Two other inputs modify the way a program is executed.
The Wait line is used to suspend a program until the signal level
on that line is in a certain state. Commands allow the program
toc wait for either a high level or a low level, making it
possible to synchronize on either transition of the line. The
Dowhile input is used with the conditional loop command. While
the line is low, the C¥525 will loop back to the specified program
location, repeating the program section over and over. When the
line goes high, the controller will continue with the rest of the
program.

SLEW

STEP INHIBIT
MOTION COMPLETE
ABORT
RUM
WAIT
PROGRAMMABLE CUTPUT
DDWHILE

FROG/ LIVE

Figure 2.5 Secondary control inputs and outputs

18

The CY525 also provides a number of output signals which may be
used by other parts of the system. While stepping, the Slew line
indicates that the C¥525 has reached the maximum programmed step
rate, and is not accelerating or decelerating. When the C¥525
has stepped for the number of steps specified, the Motion
Complete signal indicates the end of the current motion. Run is
used to indicate that a program is executing. In addition, the
CY525 provides an uncommitted output, Programmable Output, which
the user may apply as needed. The lewvel on this output is
controlled by two commands, one for a high output, and the other
for a low output.

CY525 PINOUT DIAGRAM

The CY¥525 pinout diagram is shown below, followed by the table of
pin definitions.

N
1/0 REQUEST 40 fe— +5 VOLTS
YTAL 19 fe=—T1/0 SELECT
o CY525 38 |=— WAIT (PROGRAM)
RESET 37 }—= WOTION COMPLETE
UNUSED 36 f=e— ASCII/BINARY
ABORT 35 }—= PULSE
GND 34 |— PROGRAMMABLE OUTPUT
INSTROBE 33 |—= DIRECTION
UNUSED 32 F—»= RUN (INT REQ 2)
OUTSTROBE 31 f— PROG/LIVE
CLOCK /15 30 f=— STEP INHIBIT
DB, 29 —» STEW
08, 28 f=— DOWHILE
08, 27 —= BUSY/ROY
';g STEPPER ‘z"’: e ‘;"”“”
EIB: MOTOR .| _ ¢: aTuEPPEH
ey CONTROLLER | bl
ﬁ“ﬂ 1] I ¢1 SIEHM.S

Figure 2.6 C¥525 Pin definition

19

FITEERLIE

S AR AR

T T T naTTTETT

TABLE I

C¥525 PIN DESCRIPTION

e

TR R TR LN nE R T n g R R R B B b o BB R O B L i R PSR TR EEE T R N R R T

DESIGNATION PIN# FUNCTION

VCC 40 +5 volt power supply.

VDD 26 +5 volts.

VS5 7,20 circuit GND potential.

Xtall-Xtal?2 2,3 inputs for crystal or external clock

{input) (not TTL). See Clock Circuits section.

Clk/15 11 This output represents the crystal

{output) frequency divided by fifteen. The pulse
width is at least 300 nanoseconds.

Reset 4 initializes controller to power-up

{input) state.

DEA-DBT 12-19 bidirectional parallel data bus.

I/0 Select 39 indicates direction of data on the data
{input}) bus. Low = input to CY525. Hi
= gputput from C¥525, which can only be
generated if CY¥525 has received "V"
command. Also used to read position
while stepping, i.e., on the fly.

I1/0 Regquest 1 strobe to initiate command input when

{input) writing to CY¥525, 1Initiate data output
when reading from CY525. Interpretation
of pin 1 is a function of I/0 Select
{pin 39). May be used while stepping to
change the step rate on the fly.

Busy,/Ready 27 handshake line for command data input.

{output} Host must wait until Ready state is
indicated by a high lewvel before
transferring command or data to CY525.
If Run (pin 32) is low, the Prog line |
(pin 31} must be used to enter Live |
commands while a program is executing.

Instrobe 8 occurs during data input. The data on

{output) the bus must be valid until the
trailing edge of Instrobe occurs.

Outstrobe 10 Trailing edge indicates wvalid data

(output) output by CY525 on data bus.

ASCII/Binary 36 selects ASCII-decimal or binary mode of

{input) operation.

b

B o e e o

i R

AR B

R e

e

A A A e S o

R TR e e A R S LR LR

L L T e P TR

S T R P T R e s

20

eI e Rk E R RS S EE A Ak e R N R T T R P T I T T

T

TABLE I

{Int Reg 1) [output)

Wait 38
{input)

Dowhile 28
{input)

Direction 33
{output}

Pulse (output) 35
Slew 29
(output)

Abort 3]
{input)

Step Inhibit (input) 30
Programmable Qutput 34
$l-04 (output) 21-24

Unused 5,9,25

stepping or when position is available.

program Waits for this pin to go LOW
when "Until"™ command is executed, and
waits for a High signal when "Wait"
command is executed,

is tested by "T" command. Program will
branch to specified target if low,
glse it will execute next instruction.

indicates current stepping direction
and is affected by +, -, and"p"
commands (Hi = CW, low = CCW).

C¥525 PIN DESCRIPTION (continued) |
T T I e o B I R LR R T ¥ B T S R R e 4
DESIGHNATION PIN# FUONCTION
Prog/Live 31 indicates program entry mode. Commands
{output/input) are entered and saved, but not
executed, while pin 31 is low. May be
used as input to enable Live commands
to be executed while a program runs.
1 Run (Int Reg 2) iz indicates program execution mode.
| (Program Complete) Commands cannot be entered while
{output}) program is exXecuting (pin 32 = low)
unless the Prog line (pin 31} is used.
Motion Complete 37 signal to interrupt host at end of

low when step begins, hi when step ends.

goes low when steady stepping rate has
been achieved. Will return high when
ramping begins.

Low during stepping causes the CY¥525 to
begin ramping down to the initial step

rate. If held low, the C¥525 Aborts
stepping at the bottom of the ramp. If
the Abort line is returned high during
the downramp, the CY¥525 ramps down and
continues stepping to target position
at the initial step rate.

inhibits stepping while held high.
user programmable cutput pin.
stepper drive signals.

must remain disconnected.

£¥

R N R N N P N N I L R D T

21

CY525 MOTION STATUS SIGNALS

The CY525 provides three status signals that provide information
about the motion during the execution of instructions that cause
the motor to move. These three status lines are:

!
; 1. BUSY /READY {(pin 27)

2. SLEW (pin 29)

3. MOTION COMPLETE (pin 37)

Each of these will be discussed separately.

Busy/Ready

When a motion command (P or G) is issued to the C¥525 the
BUSY/READY line goes low to acknowledge the terminating carriage
return character and remains low throughout the motion, returning
high at the end of the motion. When a P or G is executed while a
progam is running, the BUSY/READY line goes low prior to the
first step and remains low until the last step is taken.

Slew

The SLEW line (pin 29) indicates constant velocity motion when it
is low. If the CY525 requires acceleration { R not egqual to F)
the SLEW line is initially high, going low when the specified
step rate is reached. When the CY525 begins decelerating at the
end of travel, the SLEW line returns high. In the normal mode of
operation the SLEW signal is low only when the C¥Y525 is stepping
at the maximum specified rate. In the continuous step or HALT
mode of operation { initiated via the Hcommand) the SLEW signal
is low when the specified velocity is reached and goes high every
time a new velocity is specified, remaining high while the device
accelerated or decelerates to the new velcocity, then returning
low until another change in velocity is specified { on the fly).

Motion Complete

The MOTION COMPLETE signal (pin 37) indicates that the last step
of the current motion has occurred. This signal mayv be used to
interrupt the master computer. (Note that MOTION COMPLETE also
goes low for a few microseconds when the position is read on the
fly).

22

These signals are shown in the following figure for a typical
motion. An 11 MHz crystal is used.

A
m
tw
[+
b1
.
N —_—

i L3 1 1.5 2 .2 2 3.5 4
TIME IH SECOHDS

A .3 1 1.5 2 2.3 z I.5 4
TIME TH ZECOHDS

| ——— e

=]
M HH k

F
¢
F o= 3 4 K
Z o= 1 S L\
ind of Motien) N X . j " ——————
a + 3 1 1.5 2z 2.5] 3.5 4

TIME IW SECOHDS

Figure 2.7 1Illustrating the three motion status lines for a
typical CY¥525 motion command.

23

3 OVERVIEW OF COMMAND LANGUAGE 3

BIN-ASCII™ FEATURE

The CY¥525 user-corientation has been accomplished without the
expense of complicating the host programming job. For example,
the ASCII-decimal integers typed by the user at the keyboard may
not be readily available in the host programming language. For
this reason the CY525 can be placed in a binary mode in which
binary number parameters are used instead of ASCII-decimal. This
allows any computer with binarv integer arithmetic to send
commands and binary information to the controller. The C¥525 is
placed in either the binary or the ASCII-decimal mode wia a mode-
select input pin setting.

The use of ASCII instruction and ASCII-decimal integer parameters
allows the user to type commands in familiar high-level language
formats, as shown below:

N 738} ; set Mumber of steps = 738
Gy : Go (begin stepping)

where "N" is the ASCII command specifying NUMBER of steps to
take. The ASCII space character is shown as a space, and the
decimal number "738" is then entered, followed by the carriage
return key, "3"= 0DH which terminates the commands, The GO
command is entered as "Gp". The controller then steps the motor
for 738 steps. Other parameters, such as rate, may be specified
in similar fashion.

Although the use of ASCII-decimal numbers is ideal for the user
employing BASIC or other languages that can output ASCII-decimal
numbers, it is, of course, desirable that the controller accept
binary number parameters from binary computations. For this
reason, the CY¥525 Stepper Controller may be placed in a BINARY
mode via a strap, or mode-select, pin. In this mode, all numbers
are interpreted as binary data (as are all commands). See
the section on binarv data mode for details.

24

PROGRAMMABLE WITH HIGH LEVEL LANGUAGE

The primary advantage of all hi-level languages is their problem-
oriented nature, as opposed to the device-oriented nature of
machine languages. &4 secondary characteristic is their ASCII
representation, and a third characteristic of most hi-level
languages is their use of the ASCII-decimal numbering system as
natural numbers. In all of these aspects, the CY525 gualifies as
a single chip Hi-Level Language Device. The combination of hi-
level language and ASCII-keyboard programmability is designed to
maximize user ease and convenience.

Every instruction entered in the ASCII decimal mode of operation
consists of one of the feollowing forms:

1. Alphabetic ASCII character followed by the ") " (RETURN) key.
2. Alphabetic ASCII character followed by space, then ASCII

decimal number parameter, then ")" = ODH.

Examples of tvpe one are as follows:

i o e e S S R R B e R AT B PR ‘“."..E‘.S-‘Fi.’?:i”s.>.'.'<<:~-:+"§
4 HNAME COMMAND INTERPRETATION
i
i - . i
| Bitset B} Set programmable output line ;
Clearbit Cy Clear programmable output Line i
eXecute X} eXecute program :
i
i i
| Enter E) Enter program mode |
.:(,t.i..??f'rx.?‘i‘f??if?ﬁﬁsit?:?, R R R N T T N R i e <=.<L§_‘-_§|

Examples of type two are as follows:

3 R R R N R N N I T R R T TN R T
; i
| NAME ASCII COMMAND INTERPRETATION ;
: i
e
Absolute A a) Declare absolute position i
| Number N n) Declare number of steps to be taken |
. (relative) :
‘?«
| Rate R r) Declare maximum rate parameter :
: H
| Slope S s) Declare ramp rate :
b E
'? -] = = = ‘
| Firstrate F £) Declare initial step rate :
: i
E Position P pj Declare target position (absoclute)
i i
* TR R R R e R R R R R R R R T N I R N TR R R R v

25

B R e e T P TR S TR R R P SR R A

FEIE TR TN

-

TABLE I1

CY¥525 COMMAND SUMMARY

TR

TS T T T T R SR R R EREARY F RN LN N R KRR Y SO

ASCII

Fom T v I TR~ o BN o N I o S) T =+ B . N e Y B v+

Mo o EK O o 2 moA

+

=

NAME

Abzolute
Bitset
Clearbit
Delay
Enter
Firstrate
Go
Haltmode
Initialize
Jump
Loop
Number
Offset
Position

Quit*

Rate
Slope
Branch Til
Ontil
Verify
Wait
edecute
divisor
CW

CCW
Command

Label

INTERPRETATION

Set current location as specified

Set programmable cutput line high

Reset programmable ocutput line low

Time delay for specified milliseconds
Enter program code

Set initial step rate

Begin relative stepping cperation

Set continuous step mode of operation
Turn off step drive lines, reset controller
Go to specified program buffer location
Repeat program segment for specified count
Set number of steps to be taken (relative)
Set next stepper drive signal wvalue

Set and step to target position {(absolute)
Quit entering program code, re-enter

command mode. *Never followed by ";"

Set step rate parameter

Set ramp rate for slew mode operation
Branch "Til" dowhile line goes high
Stop execution until wait line iz low
Verify internal buffer contents

Stop executing until wait line is high
Begin program execution

Divide slope by divisor parameter

Set clockwise direction

Set counterclockwise direction

Stop program execution, enter command mode

Marker for "jump to" and "loop to" commands

R

e

s

B e v

e e

B N oy SR o

e e e

R
o

i i

T T R i R S S R DR L R T R R AN

26

DESCRIPTION OF COMMANDS

The command format shown in the following descriptions indicates
the way commands are stored in the program buffer, as well as
showing the binary values of the command letters. HNote that in
Binary mode the user must insert a data count between the command
letters and parameters, if any. See section 5 on Binary Data
Mode. Also note that 16 bit parameters (number and position) are
entered least significant byte first in the Binary mode. 1In the
ASCII mode, command letters are separated from parameters by a
single space, and the parameters are entered as ASCII decimal
numbers. ASCII mode commands are terminated by a carriage
return, as indicated in the leftmost column of the description,

A a) ABSOLUTE 0100 0001 3 bytes
a’t al Libyvte
b7 b0 MSbyte

The ABSOLUTE instruction defines the current position. This
position is set to the value specified by the 16-bit
argument. Absolute positions are used by all POSITION
commands. The ABSOLUTE command may be used at any time to
define or redefine anvy position coordinate.

B) BITSET 0100 o010 | | 1 byte

This instruction causes the programmable output pin (#34) to
go HIGH. This is a general-purpose output that may be used
in any fashion.

C) CLEARBIT [0100 0011 | 1 byte

This instruction causes the programmable ocutput pin (#34) to
go LOW. The user can signal locations in a program seguence
to the external world wia B and C instructions.

D d; DELAY 0100 0100 3 bytes
a7’ al LShyte
[«¥) b0 MShvte

The DELAY command will time delay for the number of
milliseconds specified by its argument. The delay is
calibrated in milliseconds, using an 11 MHz crystal. Other
frequencies will require a linear scaling for the actual
delay time. Since this is a 3 bvte command (16 bit
argument) the delay time can range between 1 msec and about
65.5 sec at 11 MHz. This command is useful in programming a
delay time between stepping motions.

E) ENTER {0100 0101 | 1 byte

This instruction initiates the program entry mode of
operation. Commands following the ENTER command are saved
in the program buffer in sequence until "Q" is entered. The
PROG line (# 31) goes low to indicate this mode.

27

F f)

6)

H)

I

FIRSTRATE 0100 0110 2 bytes
a7 al

The argument, £, is a number from 0 to 127 and is used to
specify the initial step rate for every move.

GO [0100 0111] 1 byte

The G0 command causes the stepper motor to step as specified
by the rate, direction, etc., commands entered prior to the
GO command. Stepping will be in the relative mode, with the
number of steps defined by the N command.

HALTmode [0100 1000 1 byte

The HALTmode command initiates the continuous run mode. In
this mode the CY¥525 begins stepping when the next P or G
instruction is executed, ramps up to the specified rate and
then continues to run until HALTed by a low signal on pin 6,
the ABORT pin. This allows the CY525 to take an unlimited
number of steps instead of the usual 64K step limit. During
this mode the step Rate may be changed "on-the-Fly" and the
current position may be read "on-the-fly". The low ABORT
line will cause the CY¥525 to begin ramping down until it
reaches the FIRSTrate and then stop (if the ABORT is still
low). Haltmode is reset after the motion stops, returning
the CY¥525 to the default mode in which the target or number
of steps is specified.

INITIALIZE [0100 1001] 1 byte

The INITIALIZE command causes the CY525 to enter the command
mode. None of the distance or rate parameters are altered.
Any commands following "I" will be executed with the
parameters specified prior to "I". The INITIALIZE command,
when encountered during program execution, halts the program
execution and returns the system to the command mode. This
command de-energizes the stepper motor coils, erases the
program, if any, sets the direction to CW.

JUMP 0100 1010 2 bytes

a’ aD1

The JUMP command will branch program execution to the
program buffer location specified by the argument, which
represents the byte number in the program buffer, starting
with zero. Program execution continues from the specified
byte number after the jump is executed. When the JUMP
command is issued from the Command mode, it enables the Run
(Program execution) mode, and begins executing from the
specified byte number. It is the user's responsibility to
insure that the number specified with the JUMP command is
the correct wvalue for the desired starting point. The first
byte after the "E" command is location zero. The byte count

8

specified in this section determines the number of bytes
used by each instruction. HNote that "J §p" is egquivalent to
"Xp". In crder to simplify the use of the Jump (and other
branching instructions) the C¥525 allows the use of LABELs.
An instruction is given a label (A thru E} by preceding the
instruction with the label character followed by a 5. See
description of $ at end of this section.

L c,a) LOOP 0100 1100 3 bytes
a7 al COUNT
b7 b0 LOCATION

The LOOP command uses the first argument as a repetition
count, and the second argument as a jump location. Each
time the LOOP command is executed, the count is decremented
by one. If the count 1is nonzero after the decrement,
program execution will Jjump to the specified address, which
is the second argument of the command. The jump address
specifies the location to which execution will loop, and the
count represents the number of times the lcop is to be
repeated. When the count reaches zero, program execution
continues with the instruction immediately following the
LOOP command. In ASCII mode, the two arguments may be
separated by either a comma, ©or a single space. LOOP
commands may not be nested one inside the other. Labels may
be used with the LOOP command, as with the JUMP command.

NUMBER 0100 1110 3 bytes
a7 al LSbvte
b7} b0 MSbvyte

The NUMBER command is used to specify the number of steps to
be taken in the "Relative" mode of operation. The argument
may be any number from 1 to 64E-1 {(65,535). HNote that this
parameter is stored as 2 bytes in the program buffer.

OFFSET 0100 1111 2 bytes
a7 al

The OFFSET command specifies the next step pattern to appear
on the STEPPER MOTOR DRIVE SIGNALS, pins 21-24. This
command may be used to synchronize these ocutputs with the
motor when the desired pattern is known from the motor's
position. The QFFSET command can also be used to turn OFF
all of the 4 phases, by specifving a value greater than 3.
If the argument is greater than three, but less than 128,
then all 4 phases are driven high, and the pulse line {(pin

35) does not change. If the argument is greater than 127,
the pulse line is brought low and then goes high as all 4

phase lines go high.

29

P p} POSITION | 0101 0000 3 bytes

5 s)

a7 al LSbyte
b7 b0 MSbyte

The POSITION command declares the "Absolute" mode of
operation. The argument is treated as the target position
relative to position zerc. The ABSOLUTE command is used to
define any position. BStepping to the target position begins
when the POSITION command is executed. No "G" command is
reguired. Direction teo the target position is also
determined and set automatically.

QUIT (Programming) 0101 0001 | 1 byte

NOTE: The QUIT command is self-terminating, and should NOT
be followed by the Linend "" or data count. Such
termination may result in incorrect operation.

The QUIT command causes the C¥525 to exit the "Programming"
mode of operation, wherein instructions are stored in the
program buffer in the order received; and causes the CY525
to return to the "Command" mode of operation, in which
instructions are executed as they are received.

RATE [0101 0010 2 bytes
| a7 a0

The RATE instruction sets the rate parameter that determines
the step rate. The rate parameter, r, wvaries from 0 to 127
corresponding to step rates from275 to 9675 steps/sec
fwith an 11 MHz crystal). For rate parameters between 3 and
40 the rate is linear and is specified in units of 100
steps/sec! For rate parameters between 41 and 127 the rate
is still highly linear but the increments are approximately
60 steps/sec. For crvstals other than 11 MHz the step rate
should be multiplied by £fc/11 Mhz, where fc is the crystal
Erequency.

SLOPE 0101 0011 2 bytes
a7 al

The SLOPE or slew mode of operation is used when high step
rates are required and the initial load on the motor
prevents instantaneous stepping at such rates. In such
cases, the load is accelerated from rest to the maximum rate
and then decelerated to a stop. The user specifies the
distance of total travel (via "N" instruction), the maximum
rate (via "R"}) and the slope rate ("S5") or change in rate
from step to step. The CY525, starting from rest or from a
specified starting rate, will increase the rate in such a
fashion that a maximum acceleration (determined by the wvalue
of the slope parameter) is not exceeded. For very slow
accelerations the slope may be stretched by a slope divider,
specified by the argument of the Z command.

30

T t} loop TIL 0101 0100 2 bytes

Uj

W)

X}

a7 al

The "T" command provides a "Do...While..." capability to the
C¥525. This command tests pin 28 and, if low, it branches
to the specified target instruction. Note that the target
can be either a number or a label. If pin 2B is high, the
instruction following the T command is fetched and executed.

wait-UNTIL [0101 0101] 1 byte

The wait-UNTIL instruction is used to synchronize the
program execution to an external event. When the "U"
instruction is executed, the WAIT pin (pin #38) is tested.
When the WAIT pin goes low, the next instruction is fetched
from the program buffer and execution proceeds.

VERIFY 0101 0110 2 bytes
a7 al

The VERIFY command allows interrogation of the internal
C¥525 buffers, including the rate, slope, number of steps,
and current position registers. This command is also used
tc examine the current contents of the CYS525 program buffer.
The parameter "v" specifies which internal register group is
toc be read. VERIFY should only be executed from the command
mode. To read data during the RUN mode, the Prog/Live line
must be used. Note that position can be read "on-the-fly"
while the motor is stepping, but this is NOT done with a
Verify command! See "Verify Mode" in Section 6 for details.

WAIT | 0101 0111] 1 byte

The WAIT instructicon is the opposite of the U command. WAIT
tests the WAIT pin (pin #38) for a high level. The program
will stop until the pin is high, then it will continue with
the next command. HNote that the U command may be used to
detect the falling edge of the WAIT line signal, and the W
command may be used to detect the rising edge. Thus, it is
possible to synchronize program execution to either one or
both of the transitions.

EXECUTE | 0l0l 1000] 1 byte

This instruction causes the C¥525 to begin executing the
stored program. If no program has been entered, the
controller will stay in the Run mode unless a Stop Operation
is executed (via the # command}. If the program exists, the
controller will begin execution of the first instruction in
the program buffer. If the EXECUTE command is encountered

during program execution, it restarts the program (however,
the initial parameters and modes may have been redefined
later in the preogram) and may be used for leooping or cyclic
repetition of the program.

31

Z z)} Divisor 0101 1010 | 2 bytes

+

5

n$

a’ al

The DIVISOR command provides slower accelerations by
dividing the slope by the value of the argument of Z.

CLOCKWISE (0010 1011 | 1 byte

Direction is set to clockwise by this command. Relative
mode steps are taken in the direction last specified, so
they will be clockwise until the direction is changed by the
"-" or "P" commands. The current direction is always
indicated on the DIRECTION line (pin # 33).

CCW [0010 1101 | 1 byte

Direction is set to counter-clockwise by this command.
Comments under CLOCKWISE also apply to the "-" command.

COMMAND 0011 0000 | 1 byte

The CY525 is placed in the command mode and the next command
is executed as it is received. Programs should be
terminated by a "@" command, returning the CY¥525 to command
mode at the end of program execution.

Label Designator

The CY525 allows the use of the ASCII characters A through E
(in ASCII mode) followed by the ASCII $ symbol as labels for
instructions in a progranm. There should be no spaces
between the $ sign and the adjoining characters. The labels
can be used as branch targets for "JUMP" and "LOOPR"
instructions and thus relieve the user of the need to count
bytes to determine the target address. Labels accompanying
Jump and Loop are initially stored in the program buffer as
the characters A-E, but are then replaced with the actual
address locaticn when the program is executed. Label
designators are not allowed in binary mode.

Example:
ASC) ; label A for instruction C
B) ; the BITSET instruction
J A} ; Jump to instruction with Label 2%

The labels can be used in any order, and up to five labels
can be used 1in one program. The two-character labels do not
take up any space in the program buffer.

32

COMPARISON TO THE CY512

The following summary of differences between the CY312Z and the
CY525 is provided for those users of the CY¥512 who are upgrading
to the CY525,.

The following instructions are new or modified for the C¥525.
211 of the remaining instuctions are identical toc the CY512.

A a {fa = 0..64k) set current sition = a

po

D d; {d = 1..64k) delay d milliseconds (11MHz Xtal)
whereas the CY¥512 delay command
was eXpend.

F) (£ = 0..127) set FIRST rate = £

H; no argument set HALT mode, in which the C¥525

{This was the will ramp from initial rate F to
halfstep com- maximum rate R and then run
mand in the continuously an unlimited number
C¥512. There of steps until the Abort line (pin
is no half- 6) is asserted low. Note that the
step in the position register contents will
CY525.) "wrap around”™ at 64K but there
will be no other effect.

0 o} {o = 0..255) o = (0,1,2,3) ——set output phase
and turn on phase outputs.

o » 3 == drive all 4 phase lines
high but do not change internal
phase wvalue.

R r) {r = 0..127) specifies maximum rate. The curve
is more linear than C¥512 and
parameter smaller than the C¥512
(which had up to r=256).

S s is = 1..2558) specifies acceleration {(slope)

255 = maximum acceleration
1l = minimum acceleration

T t (it = 0..48) specifies target to branch to when
test is satisfied.

X no argument execute the stored program,
whereas the CY512 run command was
poiltnow.

z z; (2 = 1..255) "slope divider" - divides
acceleration by "a2"

33

Additional Changes in CY525

Read-on—-the-Fly: Binary position readout is now possible
while the step motor is mowving. The position appears on the
bus as two binary bytes. The high byte appears first and can
be latched by the Outstrobe (pin 10) and the low byte follows
immediately and can also be latched by the Outstrobe. The
position is regquested by keeping I/0 Req high and raising I/0
Select.

The Motion Complete line (pin 37) will be high when the
initial strobe (pin 10) signals that the high byte is on the
bus and then will go low and remain low while the low byte is
strobed onto the bus via pin 10. The Motion Complete line
will then return high and remain high until another position
readout occurs or until the moticon is complete,

Note that since the Motion Complete line is often used to
interrupt the host, this is simply an extension in the sense
that it can now be used to announce the availability of the
readout information as well as the end of motion. If used
this way, it is up to the user to interpret its meaning.

Labels: Commands with targets can use labels. 4 label
consists of one of the letters A thru E followed by a §. A
program can use from one to five labels.

Example: ASP 40)
Cy
P 0}
B
J ﬁ} {jump to location A)

Change rate while moving: The C¥525 can use the I/70 Reqg line
to send a new rate while the device is slewing. The values
sent to the CYS525 must be B-bit binary numbers in the
appropriate range. The CY525 can be in either binary or
A5CII mode.

Issue commands while a program is running: The PROG/LIVE
line (pin 31) can be pulled low while a program is running.
This tells the CY¥525 to finish the currently executing
instruction and wait for a new instruction to appear using
the standard handshake. If several instructions are to be
issued, the PROG/LIVE line should be held low. It should be
prought high before the) = 0Dh character is issued for the
last instruction. Note that the PROG/LIVE line is still held
low by the CY¥525 when the part is in the Program Entrv mode,
i.e., following the command E} and remains low until this
mode is terminated by the Q command.

34

10,

11.

This feature allows the user to change parameters while a
program is executing. Note that this is different from the
new "On-th-fly" Position readout and rate changes that occur
while the device is actually stepping. To issue "on-the-fly"
commands, the I/0 Reqg or I/0 Sel lines are made active while
the device is stepping. To issue instructions, these two are
unchanged until after the PROG/LIVE line is activated (low)
and the RDY line is brought high.

Changes in the ABORT function: (see ABORT section.. page 63)

The PULSE output timing is different, with the pulse line
going high for only 2.5 microseconds (@ 11 MHz) between
steps. Also, when the step inhibit pin is tested to lengthen
a step time (delay the next step), the pulse output will be
low while the CY¥525 is inhibited. This has no effect on those
applications which use only the phase outputs, i.e., in these
cases the CY¥Y512 and CY525 response to the inhibit pin will be
identical.

The BUSY/READY line (pin 27) of the CY525 goes low at the
beginning of each motion and remains low until the motion has
been completed. The CY512 BUSY/READY line did not go low for
motion instructions executed within a program. This feature
is useful for monitoring motion in a program and alsoc allows
handshaking for LIVE commands.

The CY525 allows WAIT and UNTIL commands to be terminated by
bringing the I/0O-request line (pin 1) low. Since these
instructions monitor an external line, the master computer
can restore execution in the case in which the external line
is "stuck", thus preventing the system from hanging up.

When a motion command is given, the C¥525 will not initiate
stepping until the I/0O-request line has returned high. This
prevents the I/0-request from being incorrectly interpreted
as a request to change the step rate on the fly, i.e., while
the motor is moving. The C¥512 could begin stepping before
the I/O-reguest line returned high. This could cause a
software abort to occur if a slow BASIC interpreter left the
I/0-reguest line low too long. Note that the CY525 software
abort differs from the CY512 software abort!! (see the ABORT
discussion in section 6)

The CY525 will accelerate even if the travel distance is too
short to reach the specified step rate. This provides optimal
motion for all distances. The CY512 would step at the slowest
rate if it could not reach the specified rate before having
to begin decelerating to stop at the specified location.

In the CY512, the X-command represents a time delay and the
D-command runs the stored program. The CY525 is reversed:
the X-command executes the program and the D-command
represents a time delay. This change provides the C¥525
greater compatibility with the entire CY¥xxx family of chips.

35

4 DETAILED EXAMPLES OF COMMANDS 4

RESET COMMAND (INITIALIZE)

The "I" or Initialize command resets all pointers to the power-up
state and restores the flags to this state. Specifically, the
program is erased and the command mode entered. The direction is
clockwise (CW). Note that this command de-energizes the stepper
coils (phase outputs all go high). If this effect is
undesirable, an external latch should be used to latch the four
stepper control outputs using the pulse line ({pin 35) to clock
the latch. 5See Figure 4.1.

(0T &,

~ 48T ——3

~fL '!LT'E““ &,

br :
EXTERMAL DE-EMERGIZE COMMAND

Figure 4.1 An external latch on the stepper control outputs
prevents de-energizing of stepper drive coils when
CY¥525 is reset via hardware or software and also
allows an external contrel line to de-energize the
coils independently of the C¥525.

PROGRAM EXECUTION MODE

Once a program is entered into the program buffer, it mav be
executed with a run or EXECUTE ("X"}) command. This code has been
assigned the ASCII wvalue "X" = 58H. It is the last command to be
entered before program execution. It is a normal command in the
sense that it is terminated with a carriage return, "}" = ODH.

ABSOLUTE POSITION

The "Absolute" command, &, is used to declare the current
position, assigned the value of the 16-bit argument. Thus the
current position can be specified as any location from P to 64K.
All absolute movements, affected by the POSITION command, P, are
referenced to this position. On power-up, the absolute position
is random. Therefore, the A command should be used to define a
coordinate system, before the absolute position commands are
utilized.

PROGRAM LOOPING, ITERATION

One consegquence of stored program execution is the use of program
locps or preogram repetition. If the EXECUTE command of the CY525

36

is included as a program instruction, the program executes again
beginning with the first instruction (but using the latest
value of parameters set before the EXECUTE instruction was
encountered). In this fashion, rather complex segquences of
motions may be repeated without host intervention or
interruption. Conditional looping may be accomplished with a "Do
While" type instruction that continues looping until a conditicn
is fulfilled. This may be combined with the JUMP command, for
unconditional branching to wvarious routines in the program
buffer. Finally, a subsection of a program may be repeated a
specific number of times by use of the LOOP instruction.

Unconditional Program Looping

If the EXECUTE command, "X", is encountered in the program entry
mode, it is stored in the program buffer with the rest of the
program. When this instruction 1is encountered during the
program execution, its effect is to begin program execution
again, and therefore may be used to achieve cyclical looping if
desired. However, program execution may be aborted via the RESET
line,

Conditional Program Looping

The ability to repeatedly branch to a specified instruction in a
program until an external event occurs provides a unigue
"Do...While..." capability for the C¥525. The "T" command (loop
TIL}) is used as shown in the following example.

] PARAMETER -
ENTRY N ny set number of steps = n
PROSRAM
ENTRY E) enter program mode

1 EXECUTE IMSTRUCTIONS
RUN PROGRAM AS+) label location "A" and

"DOWHILE” - :
EXECUTE set CW direction
IMSTRUCTIOMS
sl [R rl} set rate = rl
PIN 25 A E“ PLH 28 ¢ HI B Gy begin stepping
EXECUTE - i i
REMANING | y set CCW direction
FPREOGRAM EE
R r2y set new rate = r2
E,;ITHE'ID'II% i .- o
- or B
§ ; G) go (same "n")
{SPELFT) n& T A) goto A if pin 28 is LO
TiME
B} set programmable output
RPUT (RN B [5 a 3
. return to command mode
ey — Y
ROH o quit progam mode
Figure 4.2 Conditional Loop X} begin executing program

37

Conditional Loop Embedded in an Unconditional Loop

"Do (the preceding program) While (Pin 28 is low)", then proceed
to execute the remaining program instructions. Note that the
program can (but need not) end withan EXECUTE instruction to
provide a conditional loop inside of an unconditional loop:

R rly set rate parameter [T ChRAMETER

E enter program mode TT] PROGRAM
‘ veveorrer] ENTEY

label location "C" and EXECHTE INSTRUCTIONS
C$N nl} set first distance o
+} set CW direction ﬁﬁ?&w
IMETRUCTIONS
G) take nl steps
COMDITIONAL LOOF
_ . . K
) set CCW direction = exeaure
S | 0uTER LooF
N n2) distance parameter HCTROEFIoS
T !JNC':INDITI':INNL
G) take n2 steps ; et
T C) loop to C TIL pin #28 = HI z
B} gset output HI (pin 34) g
R IE; set new rate e TIME
%) repeat program RN DOWHILE
-I PROGRAMMABLE
o exit program mode TR
Xy begin executing program

Figure 4.3

Conditional Loop Embedded

in an Unconditional Loop.
The Wait line allows a program
to be suspended until an
external event occurs. As long E

PROGRAM
EXECUTION

as the Wait line is in one
state, the program continually
tests the line without executing
any other instructions. When
the line changes to the state
being waited for, the program
continues with the commands
following the wait instruction.
Figure 4.4 illustrates the wait

UM AT UHTIL)

. . I CONTIMUE
Until command, for which the - | ProGRAM EXECUTIGN

walt line must be low to
continue.
Figure 4.4 Wait UNTIL command use.

38

JUMP Command Use

Unconditional branching to any location in the program buffer may
be accomplished by the Jump command. The single argument of the
command specifies the program buffer location at which program
execution will continue. This number is simply the byte number
within the program buffer, with the first location designated as
byte zero. Since the program buffer is 60 bytes long, arguments
for the Jump command range in value from # to 59. The actual
value used should correspond to the beginning of the instruction
which is to be executed next. The byte numbers may be determined
by adding the number of bytes used for each of the previous
commands in the buffer. Byte counts are specified in Description
of Commands in Section 3.

Note that the CY525 allows the use of labels, using
the characters A thru E to specify a branch target. A
label is defined by using the label character
followed by the $ svymbol preceding the target
instruction. Up to 5 labels may be used in a program.

The following example contains a Jump command used to repeat a
section of the program. The program steps to the home position
at high speed, then repeats motions of 75 steps at a lower speed,
waiting for a synchronizing signal before taking each motion.
The Jump command may also be used in the Command mode, to start
program execution at a location other than the first command of
a program. This example assumes the home position has been
previousy defined, using the "Absolute" command.

Ey enter program mode

EXECUTE

BEGINMING
OF PROGRAM

L J
A D L .
EXECUTE
i Loop
; L]
— ; i i ——
rogr e
Q quit program mo JUME
5 204 define acceleration slope
F 33 define first stepping rate
Xy begin running program

Figure 4.5 JUMP Command Use

39

WELDING MACHINE EXAMPLE

Suppose we want a row of six equally spaced welds on a piece of
metal. The welder should be turned on by the CY¥525 programmable
cutput line when in position, and be turned off when finished.
After completing six such welds, it will return as quickly as
possible to its starting position, and wait for the next
workpiece to come into position. It will then weld the next six
spots, and continue in this manner until there are no more pieces
to weld, at which time the program will stop and the C¥525 will

return to the Command mode.

R 120} CY¥525
s 80y define stepping parameters PROGRAM
F 9) BUFFER
A 0) declare current position as home 4E N
| 144l o
Ej enter and save the following program 00 §|
2B +
BSN 20) take 20 steps between welds 57 W
+) CW direction 47 G
W) walt until workpiece ready 43 C
CS5Gy go 20 steps 44 D
Ci activate welder E8 }lUOD
D 10003 delay 1000 msec (1l sec) to weld 03
By turn off welder 42 B
L 6,C) repeat six times from G command 4c L
P 0) return to home position after 6 welds 06 6
T B} repeat program until no more pieces 05 -
R} stop program, return to command mode 50 ' P
00
] exit program mode oo f 0
54 T
X) begin executing program 00 0
00 0

Figure 4.6 Loop Command Use.

Figure 4.7 Welding Example.

40

In the welding example, relative mode stepping is used to move

the welder from one spot to the next, while absolute mode
stepping is used to bring the welder back to the home position,
ready to start the next workpiece. The Wait line is used to

indicate that a workpiece is in position, and the Dowhile line
indicates when there are no more pieces to weld. A real

application may be more complex than what is illustrated, but the
program indicates the level of problems which the CY525 can solve
without help from a host computer. The program uses 20 of the 48
bytes available in the CY525 program buffer.

Note that the use of Labels B$ and C$% allow a branch to be made

without the necessity of counting bytes to determine the actual
location of the target instruction in the Porgram buffer. The
labels can be any of the allowed five label characters in any

order. Also note that labels do not reguire any extra bytes in

the program buffer,

e e T

¥ g

e

| TABLE III OPERATIONAL MODE SUMMARY ,
E T R N S PR T R R T *ff1‘5*fs%#ﬁ%;3§H%‘i§*?f?ﬁ§§E§«§§g§*fgg§+!3§§ N e I T T R

| MODE DESCRIPTION MODE 0 MODE 1 MODE SELECTION VIA j
| Data Type ASCII-dec Binary (pin 36=Hi/Lo (ASCII/Bin)

; Position Type | Relative Absolute N command selects relative. :
i - P command selects absolute. g
| Step Range 64K max Unlimited | defaults to 64K mode. :
. Stepping | H command selects unlimited. |
| gated operation Triggered non-trigger | pin 30 low if no triggering.

i Step on HI-to-LO transition.
Inhibit stepping if held HI.

-

R T——

Execution mode Command Program X command executes program.

A re-enters command mode.
(see section on LIVE commands
entered while program is

P A A g e e

§ executing)

§ On-the-Fly Change Read I/0 Reg pulled low to change
| operation Rate Positicn Rate. I/0 Sel pulled high

| while stepping to read FPosition.

e SR

i

%

e EE iR SR

R L T g Ry Re L FE ey e F e F e e e T B e e e e e IR,

41

5 BINARY DATA MODE OF OPERATION D

BINARY DATA MODE

To facilitate microprocessor control using binary arithmetic, the
C¥525 can be placed in the BINARY data mode of command execution
by applying a low wvoltage to pin 36. The possibility of the QUIT
command occurring in the binary data necessitates the use of a
data count sent after each command byte. 1In binary mode, the
QUIT command, "Q" = 51H, may be inadvertantly transmitted, since
some of the binary Position or Rate data may assume this value.
For this reason it is necessary to specify the number of binary
data bytes to be sent to the CY¥525. 1In this mode, the data count
and data walues are specified in binary form, while the command
letters retain their eguivalent ASCII wvalues.

Commands are issued by first sending the command letter, which
has the same value as in ASCII mode. This is followed by a
binary walue data count. The data count represents the number of
data bytes to follow the command byte. If the command is a
single letter with no parameter, such as "B", "C", or "H", the
data count will be zero, indicating the end of the command. This
is similar to sending the command letter and a carriage return in
ASCII mode. HNote that the data counts are not ASCII characters,
they are binary wvalues. Commands with parameters in the range of
1l to 255 will have a data count of binary 1, since these values
can all be specified in a single byte. Rate, Slope, etc. listed
in Table IV are in this category. The data count is then
followed by the single byte which is the binary value desired for
that parameter. Commands such as Loop, Number, etc., listed in
the table, will have a data count of binary 2, since their
parameters cannot be specified in a single byte. The data count
is then followed by the two bytes which represent the 16-bit
value for the parameter, or the two parameters used by the Loop
command. HNote that 16-bit values are sent least significant byte
first, while the Loop command parameters are sent as count then
address, the same order as specified in the ASCII mode. All
commands except QUIT are of the form:

R e e L e R L R R e e

TABLE IV ALLOWED BINARY COMMANDS AEID DATA COUONT FOR EACH

R

R E T e R R R R L R S T L T P SR R EEEEIE

R A e Ml

" COMMAND BYTE COUNT DATA BYTE 1 DATA RBYTE 2
B,C,X,E

; G,H,I,U 0 e ‘e

4 Wete— 0

E F,J0,0,R 1 Firstrate, Target, e

S,T,V,2 etc.

f A,L,N,P,D 2 Mumber of Steps,Target Position,etc.

] Least significant byte first i
; T e e T R T

42

Note that the QUIT command is not followed by a data count in the
Binary mode, just as it is not followed by a carriage return in
the ASCII mode. Also, it is possible to load an entire program
with a single byte count value. To do this, issue the ENTER
command with a data count value of zero, followed by the first
command character of the program. Instead of following this
character by the normal data count, use a count egqual to the
remaining total characters of the program, up to, and including
the # command. Do not include the QUIT command in the count.
The Q@ command should then be issued separately, ending the
program entry mode and reverting to command mode. When this
method of program loading is used, the ¥ command must have a
binary value of zero, not the ASCII character "8". The program
may also be loaded as separate commands, with a normal data count
for each command. The following example illustrates both options
for loading a program in Binary mode:

Binary with Binary with C¥525
ASCII Separate Single Buffer
Command Data Counts Data Count Contents
E) {4545
11 oo
B2 eesnns v 52eeesnanaces 52
R 127) {Dl oc
I i F
3 . 4E
az
N 300) 2C. s, 2C. s rinennn.2C
0l...eeeannn 0l...vennnnnn 01
+) {EE 2Bisecsccnnes 2B
oo
G) - [P P 47
ao
N 3 4E
a2
N TED; EE.vee... . L EE
0 D2..iiiieaan.. nz
- 124 I . 2D
oo
Gy L L 47
oo
ay G 8 oo
0o
Q {5l .51

The program buffer in the CY525 will contain the same 13 bytes
no matter which byte sequence is used. 1In ASCII mode, it takes
31 characters to define the program, including the "E" and "Q"
commands. In Binary mode, with a separate data count for each
command, the program may be defined in 24 bytes. By using a
single data count for the program, this number may be further
reduced to 17 bytes. Note that the Binary mode values and the
program buffer contents are shown as hex numbers.

43

INTERNAL PROGRAM STORAGE

The CY525 program buffer can contain 60 bytes of program commands
and data. The Description of Commands contains the length of
each command and is summarized in Table V. Note that program
parameters set in the command mode do not require any space in
the program buffer. If the internal storage is exceeded, the
effects on operation will be unpredictable. For optimal
operation, the CY525 is treated as a co-processor, with
"subroutines" loaded and executed using Interrupt Reg #2 (pin 32)
to inform the host when a given routine has finished executing.

e e I e T e T D T D O TR TR E LS

Command execution times are for command mode. Program mode
times are much shorter.

The "L" & "T" commands are normally used only in a program.

C ASCII to Binary parameter conversion time.

v variable time depending on parameter wvalues.

44

| TABLE V INSTRUCTION LENGTHS AND PARAMETER CHARACTERISTICS

#: R R R T T e R s R e N T e e N R P N R e e I N e s 5

i COMMAND BYTES PARAMETER RANGE *TIME nsec ;

; ABSOLUTE 3 absolute position 0-64k 375+c+v i

| BITSET 1 375 i

: CLEARBIT 1 375 i

! DELAY 3 msec time delay 1-65535 100+c+v i

i ENTER 1 400 i

| FIRSTrate 2 start rate 1-127 240+c+y

: GO 1 6604w

; HALTmode 1 375

: INITIALIZE 1 375

f JUMP 2 target A-E or 0-59 100+c :
LOOP 3 count and address 1-255, 0-59 150+c g
NUMBER 3 travel distance 0-65535 180+¢c !
OFFSET 2 drive signal output 0-3,0ff B80+c g
POSITION 3 target location 0-65535 550+c+v !

| ouiT * 175 :

: RATE 2 rate parameter 0-127 80+c

| SLOPE 2 acceleration 1-255 80+c ;

: TIL 2 branch target &-E or 0-=59 3180 :
UNTIL 1 380+v :
VERIFY 2 buffer pointer 0=3 125+c :
WAIT 1 3804w ?
EXECUTE 1 380 :
DIVISOR 2 slope divisor 1-255 180+c §
+ 1 380 f
- 1 380]
4] 1 : 600

R L L L e e
*NOTES:

USER SOFTWARE FOR
PROGRAM LOADING

SEMD CHAR
TOCYseg

BUFFER
IN HOST
COMPUTER

E

NzD g
+

G
e ¥
L 500
B

LG4
P

wy

HOST SOFTWARE COMSISTS OF
BUFFER TO HOLD COMMANDS TO BE
LOADED INTO CY525 PROGRAM EUFFER
FLUS HAND SHAKING ALGORITHM

TO COMMUNICATE WITH CYS25,

Figure 5.1

T ¥
Hs ¥
L]

E
STORPER

CY525/HOST Interface Diagram.

The following illustration shows the internal structure

CY525,
device.

reguire no space in the program buffer.

including the data paths between the various parts of the

Note that all parameters are stored in registers which
are separate from the program and command buffer,
which do not change may be defined in the Command mode,

so parameters

E f’ G
'Xsix“%

#

| e

.]

2 ? 1

: i o
HaNDSHAKE B %8

7] IMTER- R 01 ‘ :

I n 13

DaTS !]
EN It %‘
111 |

r:.fé_ : : - _ %f

DIRECTION] . 3100 Baal B
PLLEE e | e e

& IHSTREUCTIOH i i

¥z g | DECOCE i %

? _ TR '%.j

) g 1 '&

. i

e L ! ;
ELOCE o TE';':"T':EPY& EXECUTION & COMTROL 1 . il
IMPUTS —| resisrens L e %
— " L - -y

LR AR gf%.%“ AR

1
SECOMEARY COMTRNLS &
. EVEMT SYMCHROM\ZTATION
Figure 5.2 C(C¥525 Internal Structure.

45

In the following,

INTERFACE EXAMPLE

it will be assumed that an
data to the C¥525 wvia output port 0ODCH.

8080/8085 transmits
The string of ASCII

commands is stored at BUFFER and terminated by a terminal symbol

OFFH.

string.

0081 11A800 LXI o, BUFFER
GETCHAR:

0084 1a LDAX D

0085 FEFF CPI O0FFH

0087 CrR9300 J2 QUIT

008A 13 INX D

J088 4F00 MOV LA

008D CD9400 CALL SNDCHAR

D090 C38400 JMP GETCHAR
QUIT:

0093 CF RST EXIT
SNDCHAR:

0094 DBRS Ix OBSH

096 Ea0l ANI 1

0098 Ca9400 JZ SNDCHAR

ooo9s 79 MOV a,C

009C ESTF ANI 7FH

0092 D3ADpC ouT 0ODCH
GOTIT:

00AD DBES IN © 0B5H

D0AZ ER01 ANI 1

D0Ad4 C2AD00 THE GOTIT

D0a7 C9 RET

BUFFER:

)

¢

Figure 5.3

The D-E register pair will be used to access the character

BORC BUFFER
AsCh FOR, B5CL
COMMAMDS WODE
E) 'E' 45
Enter Frog Mads 3 oop |
e gt AR
iggaﬁfiﬁﬁ%‘ “}Z gs = 8080 BUFFER
§ FiiaiE e c i AN FOR BINARY
; ﬁ?j;% q
L ara] e a5
5 ?f.!??ﬁés’ 00 00
; '3 6D, R8E RESULTING
'R' 52 02 EE&%AM
T BUFFER
R 127) T3 | 4E.
2 32 Aol
1% o2 |
'} oD 52
¥
R0 53
oo 46
46 03
20 B R
33 58
DD; 590 It BYTES
i 'X' 58
00 00

9 COMMAMDS

FIET e st
fﬂa.r.r,.n-’ ']-'. oD ' 58
Wﬁg& ey mﬁg}é' oD Cfﬂ

KJ o 58 £2 BYTES
Woop '
29 BYTES

8080/8085 Interfaced to Stepper Motor through C¥525
Stepper Motor Controller.

46

6

READ-OUT OPERATIONS
VERIFY MODE OPERATION

The Verify mode of operation allows the user to examine the
internal register contents of the CY525. This is useful in
determining the current state of the CY525, and in verifying
parameters before or after critical operations, especially if
communications between the C¥525 and the host system are enacted
in an electrically noisy environment.

The internal contents are divided into four groups, as specified
by the parameter in the Verify command. Before reading the
contents of the CY525, the user must issue a Verify command to
set the internal pointer to the desired group. The contents are
then read back one byte at a time, using the sequence described
in C¥525 Timing and Control Information. As each byte is read
out, the internal pointer is advanced to the next byte value,
allowing the specified group to be read back by repeated single-
byte transfers. Note that I/0 SELECT, pin # 39, should be high
while the group is being read. '

6

e g S R L L e T e

[TaBLE w1 VERIFY GROUP SUMMARY 1
'_‘ R L g G e IR S e &
'{ PARAMETER GROUP # of BYTES DESCRIPTION i
0 POSITION 2 or 5 current position Binary or ASCII |
; 1 PROGRAM 0 to 48 program buffer contents f
§ 2 STATUS 6 pointers and internal flags :
: 3 PARAMETER] N, 5, R, F, Z parameter wvalues
...... iE R T e e S T e S e e R P T SR e
v 0,

As indicated in Table VI, issuing the Verify command with a
parameter wvalue of 0 will set the internal pointer to the
current position. The position can then be read back as either
a two-byte quantity in Binary mode, or a five-byte gquantity in
ASCII mode. The mode in which the Verify command is issued will
determine the format of the position coutput, The binary
quantity will be presented most significant byte first, and the
ASCIT quantity will be presented most significant digit first.
Internally the position is always maintained in binary, so in
ASCII mode, it is converted to the ASCII-decimal eguivalent
before being output by the CY525. The ASCII position is alwavs
a five digit integer gquantity, with leading zeroces as required.
Note that position is the only guantity converted to ASCII
decimal when in ASCII mode. 211 other Verify outputs are
presented in binary, independent of the current command mode.
If the current position value is 750, the five ASCII characters
would be "00750" in left to right order. The binary mode equi-
valent would be 02EE, sent as two bytes, first the 02, then EE.

47

v 1)

With a Verify parameter of 1, the C¥Y525 will output the
contents of the program buffer. The maximum program size is 48
bytes, representing the longest program which may be read back.
The actual number of bytes which have any meaning will depend
on the length of the current program. Output starts with
location 0 of the buffer, the front of the program. Commands
are stored in the program buffer with the format indicated in
Description of Commands except that the # command has a binary
value of zero. Note that two-byvte parameters are stored least
significant byte first in the program buffer. Several examples
in this manual illustrate the program buffer contents. Aall
would be read back in the order shown, from the front of the
program through the end. If additional bytes are read back,
they may not have any meaning, since most programs will not use
the entire buffer.

v 2)

The Status group, accessed with a verify parameter of 2,
consists mostly of pointers and flags used by the internal
operations of the CY525. This group is provided mainly for
device testing, and is not expected to be of general interest,
except for one flag, which occurs in the sixth byte of the
group. If the fifth bit (DB4) of the sixth byvte is high, the
current direction is set CCW. Direction is CW if the bit is
low. MNote that the sense of this bit is opposite that of the
DIRECTICON line, pin # 33.

v 3}

The final group accessed by the Verify command is the parameter
group, pointed to when the Verify argument is 3. This is a
six-byte group, consisting of the parameters which may be
specified by the user. The first parameter output is the
number of steps, as specified by the N command. This is a two-
byte value, with the most significant byte output first. Next
is the slope parameter, as specified by the 8 command. This is
followed by the current rate, set by the R command. The initial
rate, as specified by the F command, and then the slope divisor
specified by the Z command, is output. SLOPE, RATE, FIRSTrate
and DIVISOR are all single-byte values. With N 513}, § 25),
R 127}, F 3}, and Z 1), the bytes read back would be 02, 01,
19, 7F, 03, and 01 (HEX), for N, S, R, F, and Z respectively.

The timing segquence of Figure 7.1, in CY¥525 Timing and Control
Information, was generated by sending the command "V 13", and
then reading the first four bytes of the program buffer. The
other groups may be accessed in an identical manner, by
substituting the desired group number in place of the 1 in the ¥
command. An example subroutine for reading back a desired number
of bytes is shown in Figure 6.1. The routine is written in 8080
Assembly Language. It assumes that the V command has already

48

been sent.

A routine such as the SENDPARALLEL subroutine,
in Figure 11.6 could be used to send the desired V command.

shown
The

RCVBYTE routine is entered with the B register set to the number
of bytes to read, and the DE register pair pointing to a RAM
buffer which will hold the data.

003B DBED
003D E6Z20
003F Ca3Blo

0042 3E03
Q044 DIEF

D046 3EOO
0048 D3IEF

J04A DEBED
a04C E620
Q04E C24A00

0051 DBEC
o053 12
0054 13

D055
0057 DIEF

005% DBED
0058 E620
005D CABS00

0060 05
GO0el C24600

0064 3E02
0066 DIEF
Q08 C

RCVBYTE:

;READ CYS5Z5 IN VERIFY MODE, V CMD ALREADY SENT

;B = # OF BYTES TO READ, DE = BUFFER POINTER

N STATUS
ANI READY

JZ RCVEBYTE
MV A, IOSELOUT
ouT A4CNTRL
NEXTCHAR:

MVI a,IOREQ
ouUT AACNTRL
WAITDATA:

IN STATUS
ANI READY

JNZ WAITDATA
IN DATA

STAX D

INX D

;

MVI A,NOIOREQ
ouT A4CNTRL
WAITCLR:

IN STATUS
ANI READY -
Jz WAITCLR

H

DCR B

JINZ NEXTCHAR
;

MV T A,IOSELIN
ouT A4CNTRL
RET

- ™

;LOW IF BUSY
;WAIT FOR READY

;I1/0 SELECT SET HIGH FOR READ BACK

;I/0 REQUEST LOW TO REQUEST A BYTE

;LOW WHEN BUSY
;BUSY MEANS CYS25 HAS OUTPUT A BYTE

;READ THE BYTE

;SAVE IN BUFFER
;POINT TO NEXT BUFFER LOCATION

;I/0 REQUEST HIGH TO ACK BYTE RECEIVED

;WAIT FOR READY AGAIN

;CHAR COUNT
;MORE BYTES TO READ IF NOT ZERO

;I/0 SELECT SET LOW FOR NEXT COMMAND

Figure 6.1

Verify mode read subroutine.

49

Reading Position on the Fly

The Verify instruction can be used in the command mode {or as a
live command) to find out the current position of the CY525.
This is especially useful if a sequence of "relative" moves have
been executed (since for "absolute" moves, the current position
should be the most recently specified target!) However, in many
cases it is desirable to know the position of the motor during

the stepping operation. The C¥525 offers this capability,
although, unlike the VERIFY query, some external circuitry is
regquired (unless a truly fast computer is available). Using two

latches and some NOR gates, the current position can be latched
and read as follows:

1. The I/0 SEL line (pin 39) is brought high while the C¥525 is
stepping. This requests the READ-on-the-fly operation.

2. The OUTSTROBE (pin 10) is pulsed with the high position on
the data bus.

3. The INTERRUPT REQUEST (pin 37) goes low to signal that the
high position is on the data bus, and remains low.

4. The OUTSTROBE is again pulsed to signal that the low position
byte is on the data bus and can be latched by the trailing
edge of the pulse,.

5. The INTERRUPT REQUEST (pin 37) goes high to complete the
cycle,

6. The I/0O SEL should be returned low within approximately 50
microseconds after the interrupt request goes high.

7. The 16-bit position can be read from the latches.

8. 1If the I/O SEL is left high, the CY¥525 will output the new
position with each step.

SLEW (pm 27) \ [
o SEL - (PIN29) B 1

, PR R

1 1
I T T— T . - ; " 5.
DATA BUS AR AGH L] ow T
— | -
AB N |
1
A+H n_

OUTSTROBE (&) (PN D)

IMT REQ (B) (PN 3T)

A

Figure 6.2 Timing Sequence for Reading Position on the flvy.

50

Circuit to Latch Position On-the-Fly

An example circuit using popular 74LS373 B-bit latches is shown
in the following figure.

e L
a7 i

cvts T AR R

¥ i
ei 1 L% A HOST
EiE QUTPUT
’_DO-——E EMABLE
'6 5 g TE
o LWy BY {e
x

e

S
B e

OUTPUT ENABLE
READ HIGH BYTE

N.,_w
fa
inine

o,

Figure 6.3 Typical circuit for latching position on the fly.

In the example circuit, the position is latched into the LS373s
using the high going pulse derived from signals appearing on
CY¥545 pins 10 and 37 as shown in the previous figure. After the
data is latched, the CY525 returns its bus to the high impedance
state and the latches can be read back onto the same data bus and
into your computer. This can be done by enabling the LS373
outputs using low going signals generated by your computer. The
sequence is shown below:

SLEW (rm 29) l f

1/0 SEL (PIN39) [-\
INT REG (P 37} t__j

| 1
| [l

DATA BUS e o s Mol
|]

1 H |
i
GENERATED WRITE Hl mn ! :
BY HARDWARE T : |
ORCYSZSPINS |\ oce 1o h | |
:
GENERATED READ HI |
BY MASTER !

Figure 6.4 Waveforms for circuit shown in figure 6.3.

51

The exact timing for a C¥525 with and 11 MHz crystal is shown

below:
[1

Aot

m

I
¥
@]
§
§

—
MOTION COMPLETE ’ /

{INT REG 1) L J
(FIN 3T |

QUTSTROBE i
[PIN 100

@ 2 4 & g8 1@ 1z 14 16
TIME IWd MICROSECONWDS

Figure 6.5 Timing for position readout (with 11 MHz crystal).

A typical data bus line is shown below. In this case the line is
initially in high impedance (A), then the line goes high and
presents a stable "1" when OUTSTROBE (pin 10) rises (B). The
line remains in this state until going low (C) for the second
position byte. The low is held until latched by the trailing
edge of the second OUTSTROBE, and then the bus returns to tri-

State (D).
| |
DATA BUS) ,[ll/@' ©

i

: —
DUTSTROBE "
(P
5 2 } ¢ A o 1z 14 Te

TIME IW MICROSECOMDS

Figure 6.6 Typical data bus line during position readout (1l1MHz),

Important note: 1If the position is read while the C¥525 is
SLEWING, (i.e., while pin #29 is low), there is no effect on the
step period, that is, the READ operation is transparent and has
no effect on the motor. If the readout occurs while the C¥525 is
RAMPING, then the READ operation will increase the step period by
20 microseconds (with an 11 MHz clock). This is generally of no
consegquence, however, the effect is maximum during the few steps
at the top of the ramp, that is just before or just after the
motor is slewing.

52

- Latch Control Signals

The circuit shown in figure 6.3 uses two 74LS373 latches to
capture the l6-bit position that the C¥525 produces in response
to raising the I/0 SEL line (pin 39). Figure 6.7 below shows the
timing for a typical "read on the fly" operation. These signals
appear on the pins of the CY¥525. The READ request is indicated
by raising pin 39 and the write pulses appear on the QUTSTRORBE
pin (10). The signal on pin 37 distinguishes between the high
and low byte of the 1lé6-bit location.

OUTSTROBE " -
(Pid)

INT REQ
(PN 3T)

o sEL
(PIN 39)

[2e 48 (3] ge iga 122 148 168
TIKE IH HICROSECOMDE

Figure 6.7 CY525 signals for READ on the fly. (11 MH=z).

The next figure illustrates typical timing for the latch control
signals that enable the inputs and the outputs of the 74LS5373s.
The first two positive going strobes latch the data into the 373
and are derived from the signals on pins 10 and 37 as shown in
figure 6.3. The last two low going pulses enable the output of
the 74L5373s and are generated by the master computer. (11 MHz).

LATCH HIGH BYTE
7415373
LATCHIMNG ‘"
PULSES 4
CPIM I of L53735) LITEH LOW EYTE
|
{ PIN 1 0F LS3T35) [
T4LS3732 J f
ouUTPUT . A S S et
ENABLE T |
FROM HOST . |
COMPUTER i
§ |
IB éEl :1-5 6:'3 FSE 1]@3]I.23 Ii‘“Z b |

TIME IH HICRISECOHDS .

Figure 6.8 Latch control signals for circuit of figure 6.3

53

7 TIMING AND CONTROL INFORMATION 7

CY525 HANDSHAKE TIMING INFORMATION

With the parallel interface to the CY525, the user must wait for
the CY525 BUSY/RDY line (pin #27) to be high before applying I/O
REQUEST strobe to pin #1. MNote that no data set-up time is
required, so the data may appear on the data bus at the same time
that the I/0 REQUEST write strobe goes low. This is especially
convenient in the ASCII mode as bit 7 of the ASCII data byte can
be used to generate the write strobe (figure 10.8). The data is
read into the C¥525 from the data bus by a low going read strobe,
INSTROBE, appearing on pin #8. The data should be valid at the
trailing edge of INSTROBE. INSTROBE may be used to enable the
data onto the data bus from an external device. The data may be
removed at any time following the occurrence of INSTROBE, however
the I/0 REQUEST line should be held low until BUSY/ RDY acknow-
ledges the transfer by going low. The simplest interface ignores
INSTROBE and uses BUSY/RDY only (Figure 2.1). I/0 SELECT must be
low while commands are being sent to the CY¥525.

Timing for the Verify mode, in which the internal contents of the
CY525 may be examined, is similar to that described above. In
order to read the internal contents, the I/0 SELECT line must be
high. This will put the C¥525 in an cutput mode. When the
BUSY/RDY line is high (ready), the user should strobe I/0 REQUEST
(pin # 1) low. The CY¥525 will then write the next byte value
onto the data bus. This is indicated by a low going write
strobe, OUTSTROBE, appearing on pin #10. The data will be
latched and valid on the trailing edge of QUTSTROBE, which may be
used to latch the byte into the user's input port. After
OUTSTROBE, the CY¥525 will go busy, indicating that the data is
available on the bus. Data will remain valid until 1/0 REQUEST
is agaln set high by the user. Note that the user may read the
data directly, after the CY525 goes busy, before raising I/0
REQUEST. When the CY¥525 detects I/0 REQUEST high, the data bus
will be put back into a high impedance state, and data will no
longer be valid. This operation will be indicated by a second
OUTSTROEBE pulse. The CY¥525 will then indicate ready again,
awaiting the next command or another verify read, as indicated by
the I/0 SELECT line. See Figure 7.1 for the waveforms.

To enable all CY525 features, the user should connect all 8 lines
of the data bus to his I/0 ports, and generate I/0 REQUEST and
I1/0 SELECT as separate lines. I/0 SELECT should be changed only
while the CY525 is ready (BUSY/RDY is‘'high), and may be used to
determine the direction of data on the data bus (low=into CyY525,
high=out from C¥525). Since the data bus is bidirectional, the
user must turn off (tri-state) the command output port during the
Verify mode, allowing the CY¥525 to drive the data bus lines.
This may be done by I/0 SELECT, or the command port could be tri-
State at all times except during the INSTROBE pulse. The typical
for a Verify command and response is shown in Figure 7.1 below.

54

EpSEC I——
b SELECT "+ v

LY

—-F
.~

OUTETE

et DT R CHAHGE DWTE iy CHAHEE |

<2

o @DA‘.# pakY (HARGE DA LY CHARGE

Dats DaTA DETA, CATA t TATA, LATH DaTh CaTH
STABLE STRBLE STABLE STABLE STAHLE STABLE STARLE STABLE

Figure 7.1 C¥525 Verify Command Timing Sequence using 6 MHz xtal

CY525 Interface Timing

The CY525 can receive direct commands or execute a segquence of
commands stored internally in an on-chip program buffer. The
following examples illustrate typical timing for various actions
related to command execution. Specifically, we will consider the
entry and execution of a very short program. We will send the
following commands to the CY525:

Initiate the Program-Entry mode

-

{(Bit set)...drive pin 34 to TTL high

-

(Clear bit)...drive pin 34 to TTL low

-

Stop executing program, re-enter
command mode

Ll

)
i

Quit entering the above command mode

%) ; eXecute the stored program

Each of the above commands is given to the CY525 by testing the
BUSY/RDY line (pin 27) of the CY¥525. When this pin is high (RDY)
the command is placed on the data bus and the I/0 REQ (pin 1) of
the CY525 is pulled low to signal the presence of data in the
bus. When the CY525 accepts this data, the BUSY line is pulled
low to acknowledge the transfer. At this point the data may be

55

removed from the bus and the (active low) I/0 REQ signal returned
high. After the CY525 has processed the data, the RDY line will
return high. The RDY line will not return high until the I/0 REQ
has been removed. The sequence of handshakes for the entire
program shown above is depicted in figure 7.2 below.

parasus L EID BRI CED PRI
| X

R N I - / -
I

L
= UL

(P 27) {_
c] LSha :?‘3@'} ZSha Idan 3I';'-|3I2‘ 4&la

1
& Teaq Lea
TIHE [k MICROSECONDS {11 MHZ)

Figure 7.2. Handshake timing for example program.

Note that above each I/0 REQ strobe, the ASCII character being
transferred is shown on the bus. There are eleven characters
transferred to the CY525 'in approximately 3300 microseconds. As
may be seen the spacing is very regular, therefore the transfer
time per character is about 300 microseconds. These times are
for an 11 MHz crystal and should be scaled by f£/11 for a crystal
of frequency f. If we expand the timing diagram above and look
at the first transfer only, we see that the C¥525 actually
completes the transfer of the character (E) and returns to the
READY state within 200 microseconds. The extra 100 microseconds
before the I/0 REQ is pulled low (to signal the p on the bus) is
actually delay caused by the master computer used in this
example. If a faster computer were used, this could be decreased
so that the minimum character transfer time of 200 micro-seconds
per character is approached. This timing is shown below in
figure 7.3.

T Ei Hon H
QS e
- _bq”L-‘Eﬁ.Tﬁ. STABLE e _h_“‘-h‘_'_l'jli'l'ﬂx STaBELE o
170 REQ | |
(PN 1Y) L f
S S [— —
BUSY/READY | 1
(PN 277 . _ S
4 :5'3 LEa]i5|: :E'l:"ﬂ Il"_":'- IEa 3‘?@! +E@

TIME IH MICROSECOKDS

Figure 7.3 I/0 REQ and BUSY/RDY timing diagram.

56

As discussed elsewhere, if ASCII numbers are entered, there is an
additional processing time after the carriage return while the
decimal-to-binary conversion occurs before the BUSY pin returns
high (Ready). This time is absent in the binary data mode.

Timing of Secondary Signals

The handshake signals I/0 REQ and BUSY/RDY are considered primary
signals and must be observed. There are several secondary
signals that provide convenience but are not strictly necessary.
For example the PROG (pin 31) will go low upon receipt of the E}
command to indicate that the next commands will be ENTERed and
stored in the program buffer instead of being executed as they
are entered. The Q command (with no carriage return) QUITs the
program—entry mode and returns the PROG line high. This is shown
in figure 7.4 below:

SR L S S RS L. A UG T RS AP
R NANRRAR NS

——————— e e e

PROG/LIVE i
[P 31)

I"'-"“'l"-.u--

N ; . — . .
a Sel LEEa 15am| foao 25040 TaaE Itae qo0a
TIME [H MTIZREOSECOMDS {11 MHE)

Figure 7.4 Illustrating PROG line timing.

To examine the execution time for this program, we expand the
portion of the timing diagram that follows the O command, which
terminates program entry. The X} command which immediately
follows the Q begins the program execution. The timing diagram
shown in Figure 7.5 below presents the Q, X and } transfers. Aas
discussed above, the Q causes the PROG line to return high. The
X) command causes the program to begin executing as signaled by
the RUN line (pin 32) going low. As seen below, this occurs
apparently one hundred fifty microseconds after receipt of the X.

o JUHIRE [ORERAEN » T
Ei%?ﬁ —1—_;%__4__m_ml yhﬁm_mf_-_lhﬁj,_ﬁn_ -

RUN

DATA BUS 4

(PN 32) l__...Ji
PROGRAMMABLE | B
QUTPUT ({pinu 34 ' } L
PROG/ LIVE J

(PN 31 o

a T o e 1dd Soa ch P Fap
TIHE [MICEASEIONDS (1T}

Figure 7.5 Timing for PROG, RUN, and PROGRAMMABLE OUTPUT.

57

The short program consists of the commands B, C, and @. The B
causes the PROGRAMMABLE OQUTPUT (pin 34) line to go high and the C
causes it to return low. The @ command terminates program
execution and causes the RUN line to return high. The C¥525 is
now back in the command mode. The program still resides in the
CY¥525 on-chip program buffer and can be executed an indefinite
number of times by sending a succession of X commands. A new
program can be entered by sending another E command. The last
portion of the above diagram is expanded and shown below. It can
be seen that the B command causes the control pins to go high
with 60 microseconds of the RUN lines going low, however the C
command returns control low with 40 microseconds and the @
command raises the RUN lines to terminate program execution in
less than 40 psec.

PROGRAMMABLE OUTPUT 1 ‘l

(PN 34)

e e e e e 0 it i

b e _-.-\—..-q,-...! ’ :,_n__ B A we——
RUN @y @
(PN 32) L o

l?l _f 42 a0 £h L&a 128 L4 Led
TIME IM MICEOSECONRIE 11 MHZ)

Figure 7.6 Timing for program execution of sample program.

Timing for Command Execution

The B and C instructions executed in the example program above
can also be executed directly in the command mode. The timing for
these commands is shown below in figure 7.7.

oo T < TR T = T,

3"!
PROGRAMMABLE OUTPUT
CPIN 349 |

P ——"
i

110 REQUEST
EERH

BUSY/EEADY
LPim 27) ﬂ___|

293 4@ E@@ 2ae : 1z2pa Lage LEGa
T!“E IH |1IE?GS=CUHDS {11 MHz]

Figure 7.7. Timing for B and C command execution.

58

STEP INHIBIT PIN

In the triggered mode of operation, the GO command initiates the
stepping seguence if the Step Inhibit pin is low. If the Step
Inhibit pin (pin #30) is high, the controller simply waits for a
low level on this pin and then takes the step. The level of the
pin is tested during the time out loop of every step.

STEP IMHIBIT l l

METICN COMPLETE o nen | !
L Mmoot [

Figure 7.8 Step Inhibit Timing with 6 MHz xtal.

DIRECTION CONTROL

In the Absolute Mode of operation, in which target positions are
specified with the "P" command, direction is determined
automatically. If the specified position is greater than or
equal to the current position, the direction is set to clockwise
(CW), and if the specified position is less than the current
position, the direction is set to counter-clockwise (CCW). The
current setting of direction is indicated by the DIRECTION pin
{(pin # 33). HIGH corresponds to CW, and LOW corresponds to CCW.
In Absolute Mode, the DIRECTION pin is set just before stepping.

In the Relative Mode of operation, in which the number of steps
to take from the current position is specified with the "R"
command, and stepping is activated with the "G" command, the user
may control direction with the "+" (CW)} and "-" (CCW) commands.
The current setting of direction is still indicated by the
DIRECTION pin, and stepping will occur in the direction last set
when the "G" command is issued. The system powers up in the
clockwise direction. Note that the direction commands are
separate commands; they are terminated by the carriage return
character, }=0DH. Thus, to specify 100 steps in the counter
clockwise direction it is necessary to send two commands:

(=))(w100}) instead of sending (m -100)
DIRECTION . ‘ —-—; 5.:-:u55|:|-—

MOTION COMPLETE f , I
1 :

a i 0

FesITION AT EMD OF MAOTION z

Figure 7.9 Direction indication. Program: P 2} P 0) +} G} -} G)
using a 6 MHz xtal.

59

LIVE COMMANDS

(While a Program is Executing)
The CY525 has two features that allow control while the CY525 is-:

1. executing a program
2. generating step signals

These are quite different operations. The ability to change step
rates on the fly, that is, while the motor is stepping, is
discussed in another section. This section discusses live
commands, that is, commands that are sent to the CY525 while a
program is executing, as indicated by the RUN line (pin 32) in a
low state.

If it is desired to send commands to the CY525 while a program is
running, the PROG/LIVE line (pin 31) must be pulled low. This
informs the CYS525 that the master computer has a command for it.
After the CY525 finishes exscuting the current instruction in a
program, it will enter a mode in which any valid commands will be
accepted and executed. For example, the PROGRAMMARLE OQUTPUT line
(pin 34) may be set or reset (via B or C) or any parameter may bhe
changed. Multiple commands may be issued, as long as PROG/LIVE
is held low.

To exit the live mode, the PROG/LIVE line is returned high after
the last command has been entered, but before the last carriage
return code {0DH) has been sent. This is illustrated in the
following figure for three commands.

(PN 32) RUN | Ir—
{PIN31) PROG/LIVE] r“%"'
1 |
(7N 1) 170 REG 0 e T e N e N 3 Y
_ i
(mz7) BUSY/RDY u_l_l—l_rl_r_l_‘:_l_j_

i
(P 34 PROGRAMMABLE OUTPUT '] [L

Figure 7.10 Illustrating live commands sent while the CY525 is
executing a program.

It should be understood that the BUSY/READY line {pin 27) is to
be observed as usual. In the CY525, the READY line is pulled low
for every motion command (P or G) and returned high at the end of
motion. The I/0 REQ line (pin 1) should not be brought low until
the READY line is high. If the I/0 REQ is made low before the
motion is completed, it may be interpreted as a request to change

&0

the step rate on the fly ! Also, since PROG/LIVE (pin 31) is bi-
directional, the C¥525 will drive PROG/LIVE low during progranm
entry mode, so the user should only drive this pin with an open
collector gate or equivalent.

Once the CY525 sees the PROG/LIVE line is low, you must issue one
command before program execution will continue. The PROG/LIVE
line is tested between commands and if low, the CY525 will wait
for a command input. After the command is executed, the line is
tested for another live command. If the line has returned high,
the program will continue, otherwise the CY¥525 waits for another
command. Note that the 0 command will stop program execution,
which brings the RUN line high and goes back to command mode.

CONTINUOUS STEP (HALT Mode)

The CY525 has a provision for unlimited stepping (unlike the
CY512 which is limited to 64K). This mode is enabled via the H
instuction. H stands for Halt mode, since the CY¥525 will step
until Halted by the ABORT line (pin é). The H command does not
initiate stepping. It merely sets an internal flag that 1is
tested during execution of a motion command. Note alsc that the
H instruction must be issued for every continuous stepping
command, since the Halt mode flag is reset when the continuous
motion is aborted. The following example illustrates this point,

N 1000} set number of steps = 1000

G} take 1000 steps and stop
H} set continucus step mode
G} ramp up and step until halted by the ABORT
G} take 1000 steps and stop

Note the ABORT 1line is used to HALT the continuous
stepping that occurs when a GO command (G) is preceded
by the Halt mode command (H). The ABORT line should be
brought low and held low until the MOTION COMPLETE
signal is pulled low (pin 237).

If the ABORT line is returned high before the MOTION COMPLETE

signal goes low, then unpredictable results will occur. The
C¥525 in the non-continuous mode, will continue stepping at the
First-rate until the target position is reached. 1In the

continucus mode, the internal bookkeeping may be scrambled, and
the target may be anywhere.

To summarize:

Normal motions of the CY525 terminate at the specified
target position (or after N steps).

Continuous step operation terminates when the ABORT line
is pulled low and held low until the MOTION COMPLETE
signal (pin 37} goes low. There is no target position
in this mode.

61

WRAP AROUND POSITION

When the CY525 is placed in continuous step operation, the
internal position counter is not disabled, but continues to keep
track of the position (modulo 64K). By reading the position on
the fly, a master computer can readily keep track of the position
exactly. Note that at 10,000 steps/sec it takes approximately 6
seconds for the position to wrap around, thus providing plenty of
time for a master computer to monitor (by sampling) the state of
the CY525. There is no external indication of the occurrence of
wrap around, so the monitoring computer must perform simple
arithmetic tests to detect it.

ABORT OPERATIONS

The CY525 uses the ABORT line to cause the motor to ramp down
from its current rate to the Firstrate (F) and either stop or
continue to the target, depending on the condition of the ABORT
line at the bottom of the ramp. Additional abort pulses will be
ignored until motion is completed. Several cases are described
in the following. Only Case III should be used in the continuous
step mode.

Abort Line Descriptions

Case I. Normal Motion

In this case the Abort line is left high (+5V) the entire
time and the CY525 ramps up from the specified starting rate,
slews at the specified maximum rate, and ramps down to stop
at the specified final location. The slew line (pin 29) is
used to distinguish accelerated motion (up & down) from
constant velocity {slewing).

SLEW 1 {
MOTION PROFILE / \
START _ STOP ——

-5

ABORT I

|
|
MOTION COMPLETE 1

62

Case II. ABORT disabled

In the special case that the abort line is initially low
(0v), the ABORT action is disabled for the duration of the
normal motion. HNote that stepping can be inhibited via pin
30, but cannot be aborted. This case is provided for those
people who use a limit switch to abort motion. Without this
case, you could never move away from the limit switch.

SLEW L |

MOTION PROFILE 4 \

L START [
|
|
i
1

REBORT

ﬁ la—= sTOF
I

MOTION COMPLETE

Case III. ABORT and STOP

This case illustrates the ability to abort the CY525 motion
with the normal deceleration to the starting rate (Firstrate
= F) and then, upon finding the ABORT line still low, STOP
and signal motion complete. The Abort line can be brought
high any time following the Motion Complete signal.

SLEW

HORMAL PROFILE AS SET BY PARAMETERS

NG e —i ./
MOTION PROFILE / :\ <
. My

ABORT

MOTION COMPLETE

63

Case IV. ABORT and go to TARGET

In this case, the Abort line is brought low to terminate
slewing but is removed before the motion reaches the initial
step rate F (set by FIRSTRATE). Upon reaching the starting
rate and finding the Abort line high, the CY¥525 continues
moving at the initial step rate until it reaches the

specified target location and then stops and issues the
Motion Complete signal.

SLEW 1 J
- —————— =
MOTION PROFLLE I \\
| \
Y
|e— START ! ! 5TOP —»|
ABORT | L] i

MOTION COMPLETE | I

Case V. ABORT while RAMPING

This case is included to show that the normal motion can be
aborted before the slew rate is reached, that is, while the
CY525 is still accelerating the motor. Depending on whether
ABORT is returned high or not, the motion will stop at the

bottom of the down ramp or proceed at the slow rate to the
target position.

SLEW i i

——— e
ST T T T T T T T T T ™,
- i ~
MOTION PROFILE : \
A \\
[} | | b —————
START —» L

|

STOP |

ABCRT | | i

1

]

MCTION COMPLETE |

64

Case VI. Precautions about ABORTing Continuocus Motion

When continuous run mode is selected (via H), a large number
of steps should be entered, for example N 64000). Anvy
operation occurring within this range will abort normally as
shown in the CASE examples. Note however, that if the
"target position" is detected while the CY¥525 is ramping down
due to an ABORT, the CY525 will abruptly stop "on target"!
For extremely long continuous motion, this behavior will
occur modulo 64E.

an example is shown below:

ABORT !
' — ABRUPT STOP
MOTION PROFILE \{
\
MDTION COMPLETE 17

ON TARGET ——7 M__ -

STOP POSITION

If an application is expected to encounter this situation,
and if an abrupt stop cannot be tolerated, the following
procedure should be used:

Instead of issuing an ABORT signal, change the rate on-the-
fly to the desired minimum step rate. The CY¥525 will begin
ramping down as if an ABORT had been issued. When the SLEW
line goes low at the bottom of the ramp, issue the ABORT.

CHANGE RATE
ren OM-THE-FLY

MOTIOM PROFILE

SLEW L] l?_l

ABORT |

1
MOTION COMPLETE |

65

ABORT RELATED SIGNALS

The ABORT line (pin 6) is a level sensitive line that causes the
CY525 to begin down ramping when it detects a low level on this
pin. The level sensitive nature of this pin is shown in the
following figure.

65000 HOTE LEVEL TRIGGERED
2204 HATURE OF ABOET LIME

127) T ——
BORT
33 {PIN &)
1) =

Gy STEW
SLEW
{Abort) (PIN 29) J
! . . .
& 0 %0 &0 B0
TIME IN M;W

[Te e B R

ABORT (PiM @} £

SLEW (i 29)

MOTION COMPLETE

|
I
(PN 317 I
! I
i |
o o 200 300 40 | soo &00 700 800
1 TIME 1M MILLISECONDS = 1] MHTL 1Tl.|.-|
! [
I' -~ -R=127 |
| I
|
I
MOTION PROFILE | I
I |
I; I R=3

Figure 7,11 The level sensitive ABORT line can be used to trigger
down ramping of the C¥525.

66

THE SLEW LINE

The SLEW line (pin 29) goes low to indicate that the C¥525 is
stepping at a steady rate. Thus it is high during both up ramp
and down ramp excursions. The normal mode of operation {(as in
continuous stepping) causes the SLEW line to go low when the
maximum step rate is reached. It returns high when the C¥525
begins ramping down. This ramp down can result from three
different causes:

1. normal deceleration to the target position.
2. the ABORT line has been pulled low.
3. the step rate has been changed on the Fly.

The abort operation can occur in either normal operaticon or in
the continuous stepping mode selected by the H command. The last
case should occur only in the continuous step mode of operation.

In normal operation, the SLEW line is low only while the CY525 is
stepping at the maximum rate. Note that if this motion is
aborted (via pin 6 going low), the device will ramp down to the
First-rate ({specified by the F command) and if the ABORT line has
been returned high, will step at this steady rate until the
target position is reached. Even though the device is sStepping
at a steady rate, the SLEW line will remain high. To repeat, for
normal stepping, the SLEW line indicates stepping at the maximum
rate. This operation is shown in the figure below:

|
MOTION PROFILE | TARGET

: POSITION —
} |
[r
I

| f TEST STOP :
| (IF ABORTED) |
i

r_ |

SLEW

MOTION COMPL

Figure 7.12 SLEW line behavior during abort in normal mode.

67

Slew Operation in Continuous Step Mode

The meaning of slew is more general in the continuous step mode
of operation. In this mode, SLEW going low indicates that the
C¥525 has completed ramping and is moving at a steady rate, not
necessarily the maximum rate! Thus, when the rate is changed on
the fly, the C¥525 raises the slew line while accelerating or
decelerating to the new rate, then lowers it when the new rate is
reached. This is shown in the following figure with 11 MHz xtal.

CA52E I
MOTIOH
No= 20098 A X
g = 109 i' A o 5«_
F = 3 ég;% %F : T %g i %%
2 = | T Hx L G i
= ; %,‘;gsﬁ ?}i“ﬁ%&% SRR B ﬁ‘%sﬁr
% % LAEALREEY T %
ik iép t,}*%igs%- TR %ﬁ%éﬁisi igm LY %‘i
e
SLEW J_L_m 'L.h,_J' IL_._..,_I.,,,__._.JI .
9 EEB 433 nﬁﬁ SBE leaa 1z0e 14aa lEBe

TIME IH WILLISECODHDS

Figure 7.13 Illustrating the operation of SLEW in continuous step
mode when rate changes are executed on the fly.

RATE CHANGES ON THE FLY

The CY525 offers a major new feature -- the ability to specify
rate changes on the fly, that is, while the motor is stepping!
This allows much more complex motion profiles and much closer
control of motor movement. In order to make use of this feature,
the CY525 should be placed in the continuous step mode of
operation by preceding the G command with the H command (H stands
for Halt mode, since in this mode stepping must be halted via the
ABORT line (pin 6) as opposed to the normal mode of operation in
which stepping halts at the target position. There is no target
position in the continuous step mode.)

In order to change the step rate on the fly, two conditions
should be met:

1. continuous step mode should be invoked wvia H.

2. the SLEW line should be low, indicating steady
stepping (not ramping).

68

Once these condition are met, the step rate can be changed as
follows:

1. place the new 8-bit binary rate on the C¥525 bus.
2. lower the I/0 REQ line (pin 1) to the CY525.
3. raise the I/0 REQ when the SLEW line goes high.

The CY525 will now ramp up or down as appropriate until the new
rate is reached, then continues stepping at this rate until
changed again or aborted.

Rate Change Timing

When the CY525 is slewing in the continuous step mode, a new rate
can be entered as described above. Although this entry can be
synchronized with the pulse line (pin 35), this is unnecessary
and does not offer any advantage. The normal method of changing
rates while slewing consists of simply placing the new {binary)
rate parameter on the CY525 data bus and asynchronously pulling
the I/0 REQ line low. Since the I/0 REQ line is checked only
once per step, there is an indeterminate delav from the time
I/0 REQ is lowered until the SLEW line goes high to acknowledge
it. This is illustrated in the following figqure. At the left of
the figure, the C¥525 is slewing at a low rate, therefore each
step is longer and the average response time to I/0 REQ is
accordingly longer. This is observed by the initial wider 1/0
REQ pulse that is held until SLEW goes high. The C¥525 then
ramps up to the new high step rate and lowers the SLEW line when
it reaches the new rate. We now place a low rate on the bus and
lower I/0 REQ again. Since the step period is much shorter at
the high rate than it was at the low rate, the CY525 detects the
I/0 REQ much sooner (on the average) and responds by raising SLEW
and ramping down to the new low rate.

Note that since I/0 REQ is lowered asynchronously, these are
typical responses. Of course, if the I/0 RED happens to occcur
just before it is tested, then the response time would be short
even at low rates.

l T T
UD _— {pJN l} W\/_{'\/V\MN\/\/WN\/\lr\/\M/
S f i
SLEW (PiN2Z%)
—J e
MOTION DRDFILE—/ ¥

+ N ‘ , . -)
B zd 48 (3 g@ la8a 122 148 1@
TIME IH MILLISECOHLS

Figure 7.14 Illustrating typical timing for changing rates on the
fly using an 11 MHz xtal.

69

Rate Change Examples

The figure below shows several motion profiles obtained by
changing the rate on the fly. It can be sesn that the
acceleration curve between any two specified rates is simply the
section of curve that would be found between those two rates when
the CY¥525 accelerates from minimum to maximum velocity (and the

corresponding deceleration segqgment.) Note the behavior of the
SLEW line.

cr52s i
MOTION

f1
- zeos L
N
= 127 I S

= 3 — I'l.)

- 1 “\ [- R,

M T A

a -3 1 1.
TIME IN SECOHWDS

CYSES | —

MOTION /N

= zooAn ; R

= leg AT . .
= 127 a R

wZ

[I e]
L[}
)
i
[}
-

SLEW 5&L_ i .Eﬁg - 4?&-v éﬁ%gWﬁggiﬁﬁwggi‘ﬂwégiﬂ_ﬁJﬁﬂﬁf"
: 1

5} Zaa 4aa c@a a3 1a6@ 2008 Laa 1469u
TIME IWH MILLISECOWDS

DYS25 | N
MOTION ! ,
M = z@a2aa 4 -

.
= 188 jﬁ/F%PWHQNﬂx\ yff ™.
= 127 e’ K

f MW
I
s
-
-

.
i

H

E\?b'.l?-‘ 3= E%giﬁaz i ggggg-gé.;ugnue Ferres :vx-u%.g;;é;!;gggf%éégim'

G z2a84 488 45]1] gae Tean 12068 1406 Lead
TIME IH HMILLISECOHDS

SLEM

Figure 7.15 Typical profiles for "on the fly" changes.

70

Typical Response Times

If the C¥525 is stepping with R = 3 {300 steps/sec @ 11MHz) then
the step period is 3333 microseconds and the average response
will be about one half of this, i.e., 1600 microseconds. If the
rate is R = 127 (9675 steps/sec @ 11MHz) then the step period is
103 microseconds and the average response time will be 50
microseconds. The two scope traces shown below tvpifv this
timing. The I/0 REQ goes low to signal that the new rate is on
the bus. The SLEW line aoes high to indicate that the CY525 has
begun accelerating or decelerating to the new rate. {(In any
case, the maximum response time to the I/0 REQ line is the
current step period.)

I/0 REQ

SLEW

R=3 8 4pp 868 1268 1600 2000 2400 2800 3200
TIME IM MICROSECONDS

m#wﬂNwmA APARAPSAAAANA,
i

[
1,/0 REQJ

& 2@ 4@ 6a ga 188 128 148 168
TIME IH WMICROSECOMDS

Figure 7.16 Tvpical response times for changing the rate.

71

SPECIAL CONSIDERATIONS

A5 mentioned previously, the CY¥525 should be placed in the
continuous step mode (via the H command) in order to change the
step rate while the motor is stepping. If this is not done,
unpredictable behavior will occur, including the possibility of
an abrupt halt from any step rate.

If the Continucus run mode is to be used, then the Number-of-
Steps command, N, should be used with a large argument, say 64K
or s0. This is to ensure that the CY525 begins slewing. If a
very large Z factor is used, it is possible that the C¥525 will
not reach the slew state in 32K steps, in which case, the CY¥525
will not enter the Continucus run mode. This is a very unlikely
case, and one which can be avoided by using N 64000} and
relatively small wvalues of %, say < 10. The exact wvalue of 2
depends on the value of the slope parameter, S, Although this
limitation is very unlikey to occur in most applications, you
should be aware of it. If for some reason, vour system halts
unexpectly in the Continuous run mode, vou should increase N and
decrease 2.

Example of commands for initiating Continuous Stepping:

N 65000} ; set large value of N

Z 1} ; set small value of Z

S s ; Set appropriate value of slope
F £) ; set appropriate First rate

R r) : Set appropriate Max rate

Hj ; issue HALT-mode command

Gy ; begin stepping....

A second consideration is the following. When the C¥525 is
slewing {(at any rate}) and is given a new rate (bv lowering I/0
REQ, with the rate on the bus) the C¥525 will ramp up to the new
rate if it is higher than the current rate or down to the new
rate if it is lower. The effect of this is to temporarilyv
establish a new value of Rand F to last until either another new
rate is presented or the current motion is terminated. 1If the
new rate is higher than the current rate, then the new rate
replaces the maximum rate. If the new rate is lower than the
current rate, then the new rate replaces the first rate. This
has important consequences! When the ABORT line is pulled low to
end the motion, the CY525 ramps down to the first rate and stops.
In the second case described above, the CY525 is already slewing
at the first rate, therefore it will abruptlv halt with no
ramping!

72

To clarify the above situation, let us consider the following two
cases in detail:

CASE I. Begin stepping with F=3 and R=80, then change rate
while stepping to a new rate of 60. 5ince this is
lower than 80, the CY¥525 ramps down to the 60,
which becomes the effective new first rate. (F=3
is lost for the duration of this motion but will
still apply to the next motion command.) If the
ABORT line goes low, the CY525 comes to a crash
stop from a rate of 60, without ramping down as is
probably necessary.

CASE II. Begin stepping with F=3 and R=80, then change rate
while stepping to a new rate of 127. Since this
is higher than 80, the C¥525 ramps up to the 127,
which becomes the effective new maximum rate.
(R=80 is lost for the duration of this motion but
will still apely to the next motion command.)
When the ABORT line goes low, the CY525 ramps down
from R=127 to the first rate = 3, then stops if
the ABORT line is still low.

Note that in the first case, the CY¥525 halts without ramping,
while 1in the second, the normal {(desirahble) ramp down occurs.
These motions are shown in the following fiaqure.

g
|
I

MOTION \
CASE T - -—=
Fej—=== ~-—— HALT

MOTION
CASE I

~HALT

— s
-
u
L
1
]
]

Figure 7.17 Illustrating two cases occurring for aborting motion
while issuina rate changes on the flv.

73

In the continuous step mode, it is possible to change rates an
indefinite number of times. In every case, the last rate change
determines the effective values of F and R (as seen by the ABORT
operation). If the last rate change caused the CY525 to ramp up,
then the upper rate is changed and the lower rate is not
(although it may have been changed by a previous on the-fly-
operation). If the last change caused the CY525 to ramp down,
then it is effectively at the first rate, and aborting will not
ramp down but will stop immediately.

A VERY SPECIAL CASE

As a general rule, any wvalid rate parameter from 1 to 127 can be
issued on the flv (while the motor is stepping). If the special
case of R=0 occurs, i.e., if the data bus is held at zero when
I/0 REQ is pulled low, then the CY¥525 will immediatelvy stop
stepping (with no ramp down). To indicate this special case the
SLEW line goes high and then returns low (the CY¥525 is now
slewing at zero steps/sec!) but the MOTION COMPLETE line also
qoes low to sianal this unigue state. Internally, the C¥525 is
5till slewing and will continue to slew (at zero rate) until a
new rate is presented in the usual manner, by placing the rate on
the bus and lowering I/0 REQ. The only reguirement is that the
new rate be greater than the slew rate before R=0 was given.
Thus if the C¥525 was slewing with a rate of 2 when it was
stopped (via 0) then it must be given a rate of 3 or greater to
continue stepping (it will ramp up to the new rate). An example
of motion is shown in the following figure.

SRR SRR E] T g T g T T ETET R E
oTa Bus sl wo [T 2 TOTHICRTOTY o Jiia] L v L

|/ REGQUEST U

1

MOTION
PROFILE

SLEW | n i Y |
MOTION COMPLETE [(SRS | L
ABORT |

Figure 7.18 Illustrating several rate changes on the flvy
{including the special case of zero rate) and the
corresponding behavior of I/0 lines associated with
rate changes.

74

Aborting from the ZERO-SLEW State

If the C¥5325 is placed in the Zero-SLEW state by issuing a rate
of zero while the CY525 is slewing,., the ABORT line can be used to
terminate this state and prepare the CY525 for normal commands.
The behavior of the relevant lines is shown below:

MOTION PROFILE

QS
I :
BUSY/READY
ABORT _
MOTION COMPLETE |

®

In response to the G command (issued after H) the C¥525
begins ramping from the Firstrate (specified by F) to the
maximum rate (specified bv R).

In response to a new, lower, rate issued on the fly, the
C¥525 begins ramping down until it reaches the specified
new rate.

When the new rate is reached, the CY525 begins slewing at
this rate.

© ©

When a new rate of zero is issued on the f£lv, the CY¥525
immediatelv halts without ramping down. To indicate that
the CY525 is "slewina at zero velocitv" the SLEW line
returns low but, to indicate the special nature of this
state, the Motion Complete line goes low also.

®

If, instead of issuing a new rate command, the ABORT line
is brought low, the C¥525 will raise the READY line,
raise the SLEW line, and leave the Motion Complete line
low. The CY¥525 is now readv to accept new commands,
including the Verifv command.

SUMMARY

The CY525 provides two major operational modes: The normal mode
is characterized by specifving all relevent parameters and then
forgetting about the CY¥525 until the motion ({(or proaram) is
complete.

O

The continuous step mode of operation allows much more exotic
motion profiles but regquires close attendence to the CY525
behavior, as well as careful consideration of abort behavior,
etc. Choice of mode should of course be based on vour svstem
reguirements.

75

PHASE SIGNALS

The tables and waveforms below indicate the sequential values
assumed by the stepper drive signals. The tables also indicate
how the step patterns correspond to the Dffset parameter
specified in an OFFSET (0) command. Note that the OFFSET command
will set the internal step pattern pointer to that specified bv
the parameter indicated, and the pulses will appear on the drive
signal lines. If the Offset parameter is greater than three, and
less than 128 (3 < o < 128), the phase lines will all go high
with no pulse. They will go high with a pulse on pin 35 for
parameter wvalues greater than 127.

PHASE OUTPUT SIGNALS
STEP 1 2 3 4 1
o1 0 1 1 0 0
$2 1 0 0 1 1
33 0 0 1 1 0
94 1 1 0 0 1
OFFSET| 0 1 2 3 0

2 |

F3

ba ' ’

Figure 7.189 Phase Step Control Outputs.

The stepping waveforms indicate that outputs ol and &2 are paired
together, as are cutputs ¢3 and a4. ®l and ¢2 should be
connected to opposite ends of the same winding of a four phase
motor, and $2 and ¢4 should be connected to the other winding of
the motor. The user should studv the waveforms and the motor
requirements carefullv to determine the proper connection between
the phase outputs and the wires coming from the motor.

The phase outputs are considered on, or energized, when they are
low (@) and off, or de-energized, when they are high (1).

76

8 Y525 STEP RATE INFORMATION 8
CY525 RAMP CURVES

The CY525 will operate at 127 different step rates for a given
crystal freguency. Prior to issuing the first motion command,
the user should specify the initial or first rate via the First
rate command, F, for example F 3} tells the CY525 to begin
stepping at 300 steps/sec. The rate command, R, is used to
specify the maximum step rate, for example R 127} tells the C¥525
that the maximum rate should be 9675 steps/sec. The Slope
command, 5, is then used to specify how rapidly the C¥Y525
accelerates from 300 steps/sec. to 9675 steps/sec. Finally the
Slope divisor, Z, is set at one for the time being. After these
parameters have been specified, the CY525 can be commanded to
begin stepping in the relative mode via a G command or to step to
an absolute position via the P command. When either of these
commands is issued (or executed in a program) the CY525 begins
stepping at the first rate and keeps increasing the step rate at
a rate determined by the slope command. The following sections
describe the slope parameter in detail.

THE SLOPE PARAMETER

The SLOPE command, S5, allows vyou to control the acceleration and
deceleration performance of the CY¥525. 1In general, the greater
the loading on a motor, the more time is needed to accelerate the
load up to full speed. Control of this variable is provided by
specifyving the argument of the slope command. The range of this
argument is from one to 255 with the larger values corresponding
to larger accelerations. Thus the larger the slope parameter,
the faster the CY525 reaches its maximum stepping rate.

52250 52 200 i=150 S=100

CYSZS |
HOTIOH
= 2@R@Q
= 258
= LE7

=

M T A o

SLEW —em e —

a S8 188 5@ zZe@ 25p ian Ise 488
TIME 18 HILLISECOHDS

Figure 8.1 Typical velocity-vs—-time curves for walues of 8.

How do you choose the correct slope? In most cases, simply start
with the minimum slope, S=1, and increase S until the system
fails to keep up with the C¥525. While this method is the most
realistic, the following discussion and tables will help
calculate accelerations based on slope. We will also calculate
ramp times, defined as the time required to accelerate from the
first rate to the final rate.

77

Optimal Acceleration Curves

Before we calculate travel times for particular slopes we will
discuss the general behavior of the CY¥525 as a function of slope.
The first observation is that the shape of the acceleration
profile is optimal for a rate parameter of 80 corresponding to a
maximum velocity of 6000 steps/sec if an 11 MHz clock is used.
For rate parameters above 80, the acceleration curve has a slight
inflection, however it is not enough to seriouslvy affect the
performance, in fact, if the motor can accelerate through the
rates from 3 to 40, then it should be able to reach the maximum
speed of 10,000 steps/sec.

CY525 !

MOTION

N o= 18888

§ = 188 o .

R = HE rd xﬁt

F o= 3 ,.f'J \‘.

’ b
z o= !
- s -rfl \I__ —— e T——— i o e,

SLEN S ——
[- + . e 4 t +
e .S i 1.5 2 2.5 3 3.5 4
TIME IK SECONDS

Figure 8.2 Optimal acceleration curve for R = 80.

Acceleration Curve as a Function of R

As seen 1in the fiqure below, the shape of the acceleration curve
is fixed for a given value of the slope parameter and the rate
parameter merely specifies when the C¥525 will begin slewing at
a constant velocitv. The total trawvel is the same for all of
these curves, thus the travel time (horizontal axis) depends on
the travel speed, as is obvious from the figure.

i
% N S
5 L ST
& / NNV N

/ NN

TIME

Figure 8.3 A family of curves for various rates with fixed
slope parameter and fixed travel distance.

78

In order to calculate times we note that in general, the time
reguired to travel from the first rate, RO, to the maximum rate
REmax is a function of the change in rate dR and the acceleration
alR), i.e.,

t{Rmax) t{Rmax) Rmax Rmax
dr
R = alR} dt = -— 1 dt = dr = r
dt
E{RO} ti{RrRD) RO RO
therefore
t{Rmax)
{Rmax - R0 =I a dt
£ (RO}

If we make the simplifving approximation that the acceleration is
constant, and also set t{(R0}=0, then we have:

(Rmax - RO) = a t{Emax)

or

Since this only works for constant acceleration, we need to
examine this aspect. From the rate table and from the curves in
figure 8.5, we see that the ramps are approximatelv linear, or at
least piecewise linear, i.e. either:

A = 100 steps/sec--,

A = 50 steps/sec -

8 =100 steps/sec

lst Approximation Znd Approximation

From rate parameters 3 thru 40, the rate changes 100 steps per
unit. From 40 thru 100, the rate changes approximately 50
steps/unit. Finally, above rates of 100, the change per unit
varies from about 75 to 125 steps. Since the highest rates were
determined bv constraints inherent in the implementation of the
CY¥Y525, the lower rates were chosen with several features in mind:

79

First, many customers have asked for meaningful rate
parameters, and the rate parameters from 2 to 40 are
now meaningful in the sense that

rate parameter = ——-ee———_ {steps/sec)

Second, in order to use the full range of rates, the
system must be able to accelerate with greater than
100 steps/sec. between successive rates, therefore the
use of 100 at the low end imposes no severe constraints
on the system.

Third, for maximum rates up to about 8000 steps/sec.,
the curve is almost optimal in shape, i.e.:

i 555?‘

o
i ; §§r
:.!fg §§ g?gzis, »

i

i Fourth, the total travel time is minimized by
accelerating faster at the slower rates as mav hbe seen
in figure 8.4.

EE S
il

i it e

Fifth, consistent with the abowve conditions, the dynamic
range of the CY525 is maximized.

Ev525 EAMFING

| ,.}I‘A.U‘l‘ o e 'q-'r'hu-' R e g P a0 - —“

7 W M
5 = 208 3—*
7 “-TO0 MUCH TIME EXPENDED IN .5 ™ »_
~ ACCELERATION CURNES
A PRIOR TO THE CY528 RN
o~ HI"\\
S i
I_r' -\.l_}
o ",
i XN
S/ L\
P b
:'I/ " \\
4 TOTAL TRAVEL TIME e

- MINIMITED WITH

CY525 ACCELERATION \ha..ﬁiﬁ%%%i S

f i i . — -
I T T T T * L

3 Leu S IBE 4 b SE R B Tao
TIME IW MILLISECOHDS

Figure 8.4 Illustrating optimal performance via minimal travel
time associated with CY525 acceleration curves.

80

After this digression on the slope, we see that there are two
possibilities for our formula. The first one is to use an
approximate constant for the whole curve and the other is to use
a piecewise linear approximation to the curve. With this value
the formula for acceleration as a function of the slope
parameter, is given by

av(s) (22988 * D)
___________ = a(s)

vl
9]
9]
m
'_I
I
|
I
I
I
|
I
I
i
u

where a(s) is expressed in (steps/sec2). If we now substitute
this function into our expression for ramp time,

| Rmax - RO |
22988 * D
{256 - s8)

For a clock frequency different from 11 MHz, this time should be
scaled by (l11/f) where F is the new fregquency in MHz. Similarly,
if the ramp time is desired for a slope 87, different from 80
(steps/sec./unit), then scale by (80/57).

1f we consider the case RO = 300 steps/sec and Rmax = 9675
steps/sec then we can compute ramp times from the above formula
for various values of slope parameter, s, as shown below. Also
shown are the measured times from the curves shown in figure B.5.

™ AR 33T B I T T R e I R T R ER SR R R T R T TN
i SLOPE RAMP TIME | ACCELERATION_ :
; [3) fin milliseconds} in (steps/sec®)

§ COMPUTED MEASURED COMPUTED :
H i
: 1 1299 1350 7211 :
: 2 1294 1350 7240

g 10 1254 1250 7475

5 25 1177 1200 7961

: 50 1050 1050 8927

: 100 795 800 11788

. 150 540 550 17349

: 200 285 270 32840

; 225 158 150 59323

; 250 30 38 306506

T R N P T e TR T R I M R R RS S p R R E R R e R R T TR R T P R ¢

81

The formulas used in these calculations are summarized below:

22988 * D
accel = mmmm—————— in (steps / sec)
(256-5)
| R1 - RO !
time e seconds
22988 * D
{256 - 8)
where D = "distance" between two adjacent rate parameters in

(stepsfsec.) i.e., the "incremental slope™.
Rl = maximum rate ... {(argument of R command)
R0 = initial rate ... {(argument of F command)
5 = slope parameter (argument of 8 command)
Below 1s a sample BASIC program for the HP-85 desk computer.
This program accepts values for D, Rl and R0, and then computes

time and acceleration for a sequence of slopes, input one at a
time,

CYS2S RAMFs
R1= 9675 R@= 28 0= 3@
I@@0 PRINMT “CY¥S25 RAMFP=" - oI oTTmmmm T
IEA1 PRINT © ° R aRs
Zaa3 DISP "INPUT Disters-secl " = = ==
Za@e INPUT O 2 siap 1oas
2895 DISP "INPUT MAX RATE . R1" £ re 25
Inae INPUT R1 g c4cs qaeq
I@@7 DISP "INPUT MINM RATE , Ra" ? fa el
@82 INPUT RE .
I8@3 PRINT "R1=":R1;" R@=";R@;" == 0E f
D=";0 e _
THLE PRINT "=-—mmmm—mm—mmmmm e " b R~ 16568 |
@12 PRINT "%, . ACCEL..time" _ cre o |
614 DISP "INPUT slope S° lag 1178% 735
3315 INPUT § - I
TALE A=22938%0/(256-5) o8 17343 S48
@15 PRINT S:INTCAY; INTC1@@@%<R1 e memen e
—R@x A S IzE4R ZED
025 PRINT " e meann i
ZaZE GOTO 3814 gd addzd 198
FSE ZAESHE 3o
j

The CY¥525 performance for typical values of the slope parameter
are shown in the following figures. These figures are followed by
the CY¥525 RATE table, which lists the step rates (at 11 MHz) for
gach of the 127 possible rate parameters.

g2

R b T S R SRR R PR R R e e e LR ey p e
; i
CY5 es |
T N T e T L e L LT B T T T g T R e N T L D e S S T £
ik
ivmn | = g vrsgn | T Ty 3
ANT g || — TATiok ' 5_15‘] o
1 znu{ 5=250 W= Zadaa K\\ - j:;
f £ o= 134 % :- = 138 . :EI
I] T 3 \ 4
Foad i 1 ; " B
, 1 | £ PR / " 2y
,,,,,,,,,, L é —_ —e i
| — — ———
X SLEM [- g ILEW [— i
i 0 .3 1 1.3) 2.8 1 1.% 4 gs L] .5 1 L.E 1 r.s 1 N . 5
£ Timi IW SECOMDS ’ ’ § TIRE In BECEWES E
i
A cvazs] L1 N e e i
1 morias i ot ran f,-"’f ;
Ho= zeBae E ' It i <>
9 = ZTEE ; B 1T ﬁ_,f ;:
LIRS 3 i L 12
i 3 -~ i
: o | - :
. +* % ‘
z | —— %
E ALEW | — ELEd p— ;I.-
i . . L] 1eg F1 1] Jaw age an can rae T
‘ :JFE !“I."‘Fi.Llli-ECﬂubi'- “ = o o e FIHE I# WILLISECAMBE - :
e e L LS SR BT R EEFR R TR R R F R ey EEEELE: R R IEE ELELER B TR
. £
A | | on T |
L w - zemes | I" S=22 5. Loe agda z)" ‘-\\ S=l D{j
N5 o= zzs Y 1 4
1o o \
P s
cen | z 1. JI,-’ 5,
S (N] ~—
PLEu T § ILEu]
a) ' 1.3 2 2.5 M 1.8 N i L] - H (-1 2 7.8 3 1.
i fIME IW BECONDS TEHE 1w SECONDS i
s oo |
S meTiOW " - :
i AT PR __#_.-‘-"'_ﬁ 3
J s o= awn AT T —" i
£ BRI : _'J” P :}
i = ;
oo o §§ it ;
i : g — I i
i s | s .
: L] 1 Len 138 LY &1 e BT e | L] ELL] EL L] Iaw (11 LT 1] Taw 136 ;
i Timi IH WILLIBECOMDS TIAE ©™ HILLIFECONDE ‘
T T T FEEEEEEED i
H ; :
| cvsen | [;‘
HAT I DM ; ¥
W zeamn S=200 :
5 = 299 ! :
=gz | i
Fow o3 |
sl b
—_— o
& ALEM T f 3 E
3 a 3 1 1.3 2 z.3) 1.3 . i [1 1 1.9] 2.8 1 1.1 ‘ ¥
FIRE IM SECONDS TLAE IW SECOMDS .
| oevazs .;Q. crarz L p—————— :
T I I ::ew e i
& T TTT H e :
g 5 = zee 1 HL " i
IS [ECET T
e - ' [L~
I /,r""- e x,-f
P —— -
____ —— e i
SLEM |eee— SLEH e S
i) L1 TR 1] re8 258 zes 338 @4 a Tas 08§80 T TR0 l2ee iemp gma
i fIHL iM MILLISECOKDE : TIAE IH 41LLIEECORAS i
".s R e T e R ey I R R R R I T R R R R

B3

TIHE M SECDHDS

Vi

R
e e

R ——— rvyaz | m———

i . AT LGN o~
W o= zEBRR AEERFETTT
5 = qn) Goe g
Fosoj27 { Boe 127 ’H_,.._--—’
: 1 e Fos 1
\ i 7 - |’——///

SLEU | — T [

a res age Euw L T LTI . 08 488

\r“;i"'"ﬁ] EEEE AL iEAsiEE) R R Y i
F :
; CY525 Slope Curves |
o~ — - - - :
& e ST T T R D T DR ssézﬁf%s%éwés§££ﬁiﬁﬁiﬁ¥a%a¥$ééE§5é+?§%ia*§%%$§$€$$§?£‘§ﬁff:?:s;%é?fﬁyéiéiaiéééspii%
% tvdan -'_"\ ioewmzs 1 e :
: :aruz:a“ Iy ., g=75 é watlow / L =2
:? v f’_,f‘ i BCELLLL -
; i - -t I L E
E Foaoigr ; B o= 127 /_,.r’ i
e o 1 I . i
; : P i S - :
i / g o : ™
é o \m‘& E c S L >
Y oerra [S % SLEM S §
b L] .8 H 1.3 z z.a 1 1.3 4 i * .5 i 1.2] PR T 1.2 s H
i TEME DW SECOHDS E TINE IM SECOMDS i
i cvae i crizr | — B
“] noriam ; mOrLaH '///—— E

: ::au % AT :

£ 4 = F ‘-.-.r'_"_,_'—"’-.d E
| B e é
:E 2 =1 = £ ; : : -"“_-HF :
'E 4../’. 5? _J E
L : :
&‘ SLEH] | S iLEM | ;
4 L] el Ll LL L L1l 1908 1ZRF LAEE TEee L] ran a9 EnE. B TRME 1ERE 1MRB LEBD
g; FIHE IH WILLISECOKOE TIME Ik 41LLISECANDE
g-’_f':' fLE -’5“”3*?”Mjfjmwmmm&% R L e T D N R T L T PR R é
i i
o avsas)_,.—--—\ cvezs | e, i
{IRELE 5=10 TREET y h g=7 i
|- ?:Ha "'/ ~— . W 2aaw e ‘MH_‘_ 3
. 1 L . - | LT -
H I ey - E = 17 ~ \"\ ;
!é & 1 - \M i Fo= 1 v s 5
i ! £ I - \ﬂ,_‘,__ 3
| = | o |
‘§ LLH '__ | S— . g SLEW | I
N .2 1 1.3 z 2. 2 T3 i a 3 e z B L T
TIHE i 3ESOKEY
,{%

e S T T
-
=
-
-
A

L
rd
oo

e

e

(10 LLL] Fann 1zan r4gn LEnm

i
—

§ TIRE IW AILLIGECOMAE FIME 1M HILLI1SECOHDS
éf;;;;gsss;;;;;off*gssf933ss§g§3;g§;z;é;é};§§;;aés§§§§§§s3?g;;EEEE%EEE?é%%???EE??55§§%§f§<*#%&£¥ﬁfﬁfs$fé-; FE R T T R T

Figure 8.5 Example CY525 slope curves.

a4

The Slope Divisor Z

If the acceleration is expressed as dv/dt for z=1, then the
average acceleration will be (1/z)*(dv/dt} for any value of 2
from 1 to 250. Typical accelerations are shown below. The range
of rates from 300 to 4000 steps/sec (with 11 MHz clock) are very
linear and the slope divisor calculations are most accurate in
this range.

a zua 488 88 egaa lg@a 1244 lagg TE@aa
TIME 4 MILLISECOHDS

Figqure 8.6 Effects of various % factors using 8§ = 1.

Special Case - Short Slew

If at the end of acceleration, there are fewer
than 256 steps to take before starting to
decelerate, the CY525 will immediately begin
deceleration. WNo slew steps will be taken.
When the CY¥525 reaches the first rate, it will
continue stepping at this rate until the
target position is reached.

85

EERITEEIE RS EAE N T I R N T N R R R e T O R

TABLE VII C¥525 RATE TABLE

T L e E e IR R R R SRR P E

R RATE R RATE R RATE
0 * 4 40 4000 85 6231
1 %* 41 4062 86 6284
2 * 42 4107 87 6338
3 300 43 4154 88 6393
4 400 44 4201 89 6449
5 500 45 4250 90 6507
6 600 46 4299 91 6565
7 700 47 4350 92 6624
8 800 48 4402 93 6684
9 900 49 4456 94 6745
10 1000 50 4511 95 6808
11 1100 51 4567 96 6871
12 1200 52 4624 97 6936
13 1300 53 4683 a8 7002
14 1400 54 4743 99 7070
15 1500 55 4805 100 7138
16 1600 56 4869 101 7208
17 1700 57 4934 102 7280
18 1800 58 5002 103 7352
19 1900 59 5070 104 7427
20 2000 60 5141 105 7503
21 2100 61 5178 106 7580
22 2200 62 5214 107 7659
23 2300 63 5252 108 7739
24 2400 64 5289 109 7822
25 2500 65 5328 110 7906
26 2600 66 5367 111 7992
27 2700 67 5406 112 8080
28 2800 68 5446 113 8169
29 2900 1 69 5487 114 8261
30 3000 5 70 5528 115 8355
31 3100 i 71 5570 116 8451
32 3200 ! 72 5612 117 8549
33 3300 ; 73 5656 118 8650
34 3400 74 5699 119 8753
35 3500 75 5744 120 8858
36 3600 76 5789 121 8967
37 3700 77 5835 122 95077
38 3800 78 5882 123 9191
39 3900 79 5929 124 9307
i i 80 5978 125 9426
Tt hen S5 ere) 81 6027 126 9549
subject to change 82 6076 127 9675
+ R=0 halts stepping 83 6127
in contiracus mode ga 6178

R T T e R R R s N L B R T L IR B T

86

STEP TIMING SIGNALS

The PULSE output (pin #35) may be used as a step timing signal.
When the CY¥525 is not stepping, this ocutput is high. It goes low
at the beginning of every step, and stays low for the duration of
the step. When the step time is over, PULSE goes high again.
PULSE remains high for at least 16 microseconds between steps.
This time has been included in the rate equation.

R=5
500 s/s

2 seo 1088 1586 2080 2588 2088 3589 4
TIME IM MICROSECONDS

R=10

1000 s/s
B 200 400 600 800 1000 1209 1482 1680
TIME IN MICROSECONDS

R=20

2000 s/s
8 1p@ 288 00 466 500 6p8 793 gam
TIME IN MICROSECONDS

R=25 _

2500 s/=
T 1ee 158 zee 250 360 350 'y
TIME IN MICROSECONDS

Figure 8.7a Pulse Times for wvarious rates,

87

R=310

i
3000 s/s]
P} et Y= T
£ T Lea 15a Z2@@ © 258 z2aa 25p 400
TIME IH MICROSECONDS
R=40
4000 s/s
@ s@ 1e@ 150 z2@a 2s@ g6 I5@ 488
TIME IH MICROSECOMNDS
B=58
5000 s/s
] 5@ 1ee 158 zoe Z5@ ipa ise apa
TIME IWM MICROSECOMDS
R=88
6400 s/s
S - S e S s o i e P —t
) ze 4@ 68 se 188 128 146 L@

TIME IH MICROSECOHOS

7000 s/s

R=98 (—l

|

b é@ 4@ &0 o4 1a@ 128 1a@ 168G
TIME IH MICROSECOHWDS

Figure 8.7b Pulse times for wvarious rates

88

The CY¥Y525 will begin ramping from the Firstrate specified as the
argument of the F command and ramp up until it reaches the
maximum rate specified bv the R command. At this point the SLEW
line (pin #29) will be brought low indicating that the maximum
specified step rate has been attained, The CY¥525 will continue
slewing until it is time to down rampe to hit the target position.
The point at which this occurs is determined automatically by the
CYh25. The SLEW line is then turned off {(set high), and the
CY¥525 begins ramping down until the first rate is reached and
then travels at this rate until the target position i1s reached.
In most cases only a few steps will be taken at the slow rate.

If the number of steps to travel is less than the number reguired
to reach the slew rate and then ramp down again, the CY¥525 will
ramp up to the maximum rate possible that allows an egual ramp
down in order to reach the target while traveling at the minimum
rate., This assures that the total travel time is minimal for the
specified Firstrate, slope, and travel.

For an approximation of how many ramp steps will be taken there

are two important parameters:

1. how much time it takes to reach a certain rate
2. how far the motor has moved in that time

To determine the number of steps the motor has traveled during
acceleration, simplv compute the average step rate, and multiply
by the elapsed time. HNote that the average rate for a linear
function is giwven bv

20 the travel distance is

|R1-RO | |R1-RO |
Rav * time = —===—==-= * e * steps

89

O ELECTRICAL SPECIFICATIONS 9

ABSOLUTE MAXIMUM RATINGS:

Ambient Temperature under bias......oveas 0°C to 70°C
Storage TemperatuUre....cceusssssacssssss .e.=659C to +150°C
Voltage on any pin with respect to GND...-0.5V to +7V
Power Dissipation........... P sa e e e 1.5 Watts
TABLE VIII DC & OPERATING CHARACTERISTICS
{Ta = 0°C to 70°C, V . = +5Vil0%)
!
SYMEOL PARAMETER MIN | MAX |UNIT | REMARKS
| 1
Iee pwr supbly current 100 mA
Vig | input high level 2.0 vccj Vv | (3.8V for XTALy o,RESET)
Vi1, | input low level =.5 8 v | (0.6V for XTALy o RESET)
Lo édata bus leakage 10 uA 'high impedance state
Vou %Gutput hi voltage 2.4 V. Igy = -40 pA
VoL ioutput low voltage .45 W iIDL = 1.6 mA
L e — :]
Foy 'crystal freguency 1 111 | MHz‘see clock circuits
| i |

ELECTRICAL CONVENTIONS

All CY525 signals are based on a positive logic convention, with
a high voltage representing a "1" and a low voltage representing
a "@". Signals which are active low are indicated by a bar over

the pin name, i.e., PULSE.

211 input lines except pins 1, 6, and 39 (I/0 Req, Abort,and I/0
Select) include 50K ohm pull-up resistors. If the pins are left
open, the input signals will be high.

The data bus is bidirectional, and is tri-state during nonactive

modes. Note that data bus signals are positive logic, and all
command letters are upper case ASCII.

90

RESET CIRCUITRY

The RESET (pin #4) line
must be held low upon
power-up to properly
initialize the CY¥525.

This is accomplished via n I« - xq

the use of a 1 an-Ia Lo [

caracitor as shown in _L :Eﬁb i A PULLUP
Figure 9.1, RESET must i

be low for 10 msec after
power stabilizes on
power=-up. Once the CY525
is running, RESET need
only be low for about 15 a. b.
usec (6 MHz crystal).

Figure 9.1 a)lReset Circuitrv.
bYExternal Reset.

CLOCK CIRCUITS

The CY¥525 mav be operated with crvstal, LC, or external clock
circuits., These three circuits are shown in Figure 9.2. Unless
otherwise specified, all timing discussed in this manual assumes
a 6MHz series resonant crvstal such as a CTS Kniaghts MP0O60 or
Crvstek CY6B, or equivalent. The CY525 will operate with anv
crystal from 1 to 11 MHz, includinga a standard 3.58 MHz TV color
burst crystal. All timing wvalues specified in this manual will
be changed by using different crvstal frequencies. Time values
must be scaled by 6/fcy, and stepping rates must be scaled by
fev/6, where fcy is the crystal freguency in MHz. Note, however,
that the "D" command is calibrated for milliseconds at 11 MH=z.

CEYSTAL SERIES RESISTANCE ¢ Ce3Cpp o1 15y BOTH ATAL1 & XTALZ
CHOULD BE LESS THAM 755k Z M LE! SHOULD BE DRIVEN.

AT &MHz AND LESS THAN
18G50 AT 3.6 MHzZ.

Cpp=&-10pF PFINTO 47041

PIH CRPACITAHCE

aL

15-25pF piis EACH C SHOULD BE B RESISTORS T0 *5¥ ARE MEEDED
I APPROX ZOpF, IMCLUDING TO IMSURE Wik = 2.8Y IF
= IMCLUDES XTAL, STRAY CAPACITANCE TTL CIRCULTRY 1S USED.

SOCKET, STRAY. EACH PIN MUST BE HiGH FOR 35-65%
MOT HEEDED OF THE PERVGD.
RBOVE 4 MHz. RISE AND FALL TIME MUST NOT EXCEED

20 MAHOSECONDS.
CRYSTAIL LC

EXTERNAITL
Figqure 9.2 Clock Circuits for CY525.

91

10 circuitsanDExampies 10
CY512/KIT

Since the CY525 contains all the logic needed to operate a
stepper motor, including instruction decoding, parameter
maintenance, and step timing, very little external circuitry is
required to get a minimal stepper motor subsystem operating. A
circuit indicating what is required is shown in Figure 10.2. As
a convenience to our customers, Cybernetic Micro Systems has
implemented such a circuit on a small printed circuit board.
This board is made available as a kit, including all parts
necessary to put the board together. & photograph of the
C¥512/Kit is shown in Figure 10.1.

The design consists of a C¥512 ({or substitute a CY¥525) with
associated peripheral parts (crystal, socket, capacitors, etc.),
buffers with LED indicators on CY525 output signals, switches for
CY5Z25 inputs, Abort/Terminate logic for closed loop motor
operation, and a simple, unipolar driver circuit for the motor.
Three edge connectors make the various signals available to the
rest of the system. 8Signals are divided into a Data Interface,
Secondary Control lines, and Motor and Power Supply connections.
Finally, about half of the board consists of a wire-wrap area,
useful for special data interfaces or motor driver circuits,

The kit supplies all parts needed to assemble the board, with
assembly reguiring only a few hours. In addition to the kit, the
user must have a power supply, a source of commands for the CY525
(keyboard or computer), and a four-phase stepper motor. Complete
documentation is provided. The C¥512/Kit is ideal for
prototyping, allowing first time users of the CY525 to guickly
and easily get their part intc cperation.

COMPLETE KIT SHOWN ASSEMBLED

Figure 10.1 CY¥512/KIT board available for prototyping.

92

TEST DEMONSTRATION CIRCUIT

e Ay HOLSISHYE L NOLTH ITE]
o MO 40 INTVALE
(¥4W ASE) 2902 NN
DY LI0A HOL0W Y . 43N LIN4E
= B0 OND ==
uﬁ <Hz nA = I3 angb——] -._..
{I5YHA WIVE Woo1 BLan : A : Lgd i -
HOLOW A3dd315 ° e i sl M ki
389Hd ¥ 01 SE g T 8
- L VI n..n._m. T -
: ot a0 j ¥iwd
s Sk o8k
e 1zl wg I
T T — —
Ao BL QTR0 Bz = : mn]
HA = - [-mnn T T TTER
qn== SONYWwWOD FA1 aug._uw- dLE oL Q¥smT T K
o5 uA 3 & &
wanl TE nA 1E &
gy b NA“ EE .." .-..u._l Y
z.ﬂ..a A nA 3 n:v._,w I._.t.i..lq
asl s LADQY/WHIL S
! % T s e . o i hay =
A Y & o T -
EmuliiIIIILHIlEIﬁfiIH
||..a.||a Lk 2 E.“m_m ¥ = 51 Hi
=, o i = N THW -2
T W f— — .
+ L0 h.ﬂl. ¥ i Reid F_.;.m__.q
*(193ndwos 3504 “T_. il et 380315
gseatnba1) AT3-syi-uo = L QEYeasIH
uor3tsod peay o3 AI3Inoito v s =
ppe 03 g*9 =2anbrj ©3 1833y 135384
*asodiand sSTY3 IoF TESpr ST 107 @2anbtg urt Y

umoys LIN/ZISAD @2ulL -diay osTe TT1Tts Aouanbaijg

Tealshio 1amoTls ¥ *sindino 2yl Uo pasn 23 SgET JT 1980

3y3 03 9TYISTA =21F SUOT3TSUBI] 5yl 3Byl os ‘parjioads sajea mols aaey safdwexa
BUTWTIY} @Yyl utT pasn sweiboad syl “[enuew STyl JO ¥Ooeq 2Yy3j utl swelbelp butwrl
paTTelsp =2yl ybnoiyl buryiom usym anii ATTeToRdses S1 STUL *SUOTITISURI} 23RS
pue aiels =2yl Ae(dsip ATTensta ©3 s53utlT 3ndino [le uo (sapolp butiitws 3ybriT)
sagT @sn o3 [nIydisy ATTeisusb sT 3T *GZSAD 24l [013u0d 03 pieogday IIDSY ue
Jo @50 sMolTe 3eyy dniss o7dwis e sapracad gUpl 24nbTJ UT UMOUs AIJTINDITOD SYL

Test Demonstration Circuilt

Figure 10.2

93

CYB-002 MULTI-PURPOSE CONTROL BOARD

& general purpose prototyping board is availlable which will allow
the user to easily interface his computer, keyboard, or CRT to
nis control application. The CYB-00Z board comes ready to
assemble as a kit, with the capability of accepting any two
Cybernetic Micro Systems control chips in any combination. Thus
the board can become a dual axis stepper controller, waveform
synthesizer, programmable controller, printer controller, data
acquisition controller, and the like, with very little additional
effort. Support software will also be available scon.

The core of the CYB-002 is Cvbernetic's new Local System
Controller, the CYZ250, which accepts ASCII commands, and
addresses either of the two target chips wvia a pass-through mode,
or accepts the data as direct commands to its own program buffer.
Since the CYB-002 is wired to accept an optional EEPROM, then
once programmed, it may also operate as an independent system.
The board has additional circuitry for an optional LCD display
and CY¥300 display controller, and for a network mode via the
CY¥Z3Z. The C¥232 will give the user the coption of stringing
boards together in a network with each having the ability to
address up to 256 devices.

User definable switches and LEDs are available for wvarious input
and output signals, and an additional wire-wrapping area allows
the user to customize the board to his particular application--in
the case of the C¥525, this could include the motor driver
circuitry., While the board was designed as a prototyping aid for
implementing the CYxxx family of chips, many users find that it
is the ideal sclution to their control problems. The CYB-002 is
avallable with a wvariety of options: Display with CY300, Network
with C¥232, Memory with EEPROM, Keyboard, and Target with any
CY¥xxx, as shown in the figure below:

VME COMN N.ECTCIHS MNOT INCLUDED.

6.3

.‘;;_' :”‘:f _ ﬂf;ﬂhir 1;; ;ihi- ___i_

KIT SHOWM ASSEMBLED WITH DISPLAY,
MEMORAY, AMD NETWORK CFETIONS

Figure 10.3 CYB-002 Multi-purpose Control Board

94

DRIVER CIRCUIT CONSIDERATIONS

The C¥525 provides the timing and logical signals necessary to
control a stepper motor. However, to make a complete system, a
driver circuit must be added to the CY¥523. This circuit will
take the logical signals generated by the CY525 and translate
them into the high-power signals needed to run the motor,

The user has two choices in the selection of driver circuits.
Existing designs, usually in the form of pulse-to-step
translators, may be used, or special designs may be created.
Translators usually reguire a pulse and direction input, or two
pulse streams, one for CW stepping and one for CCW stepping. The
translator takes the pulse inputs and generates the proper four
phase outputs for the motor. MNote that it is also possible to
drive motors with this scheme which are not four phase designs.
Since the translator generates the actual motor driver signals,
it only reguires the pulse timing and direction information
generated by the CY525 Pulse and Direction signals., This allows
the CY525 to control three and five phase motors as well as the
standard four phase designs.

— S |
PULSE o ! cow |
= o
DIRECTION = Ig :Gf
. ﬁ f o
-- : 3 e
¢] Do L1 2
5 DIRECTIONR | -
kil o
&
CY525] CY525

Figure 10.4 C¥525 to Translator Driver connections.

If the user opts for his own driver design, the Pulse and
Direction lines may be used, or the four phase ocutputs may
directly control the driver circuits. This type of design makes
full use of the CY¥525 signals. The following paragraphs are
meant as a guide to various types of driver circuits, but should
not be used as final driver designs. Detailed switching
characteristics, transient suppression, and circuit protection
logic have been omitted for clarity and simplicity.

Unipolar designs are the simplest drivers, and are generally
useful when running at less than 600 steps per second. These
designs reguire motors with six or eight leads, since the power
supply is connected to the middle of sach winding. The end of
each winding is pulled to ground through a transistor controlled

by one of the phase ocutput lines from the CYS525. Motor
performance may be improved by adding a dropping resistor between
the power supply output and the center tap of each winding. This
decreases the field decay time constant of the motor, giving

95

faster step response., The performance increase is paid for by a
higher wvoltage power supply and heat losses through the dropping
resistors. This type of circuit is know as an L/XR circuit,
where the x represents the resistor value relative to the winding
resistance. An L/R circuit would not have any external
resistors, while an L/4R circuit would use a resistor of three
times the value of the motor winding resistance. Note that the
power supply could be four times the nominal motor value with
this circuit. Also note that this circuit reguires only a single
voltage and one transistor per phase.

v ' e
% DROPPING RESISTOR +

(le ¢'E ¢'3"_ qjd.-

Figure 10.5 Unipolar driving circuits.

The second basic type of driver circuit is the bipolar design.
In this case, the motor is driven only from the ends of each
winding, with switching logic used to control the direction of
current through the winding. These circuits may be implemented
with a four lead motor, since only the ends of each winding are
needed. Bipolar designs are more efficient in driving the motor,
and result in higher performance than the unipolar designs. Two
metheods of switching the direction of current may be used. With
a2 single voltage power supply, eight transistors are used, two
per phase. Transistors are turned on in alternate pairs across
each winding to control the current. The second alternative uses
only four transistors, but reguires a dual voltage power supply.
In this case, one side of each winding is connected to ground,
and the other side is switched between the positive and negative
power supplies. In both designs it is very important to insure
that both transistors on one side of the winding are not on at
the same time, as this would short the power supply through the
transistors, generally destroying the transistors in the process.
Protection logic is usually included to insure that one
transistor is off before the other is allowed to turn on.

vt

$,

DROPPING
RESISTOR

DROPPING
RESISTOR @2

Figure 10.6 Bipoclar driver designs.

96

The most advanced driver designs are variations on the unipolar
or bipolar types, although they are generally implemented using
the bipolar approach. These drivers are capable of the highest
step rates attainable. They work by switching current or voltage
through the motor at much higher than the rated value. This is
done for only a short period of time, causing the magnetic field
in the motor to change very guickly, without exceeding the
maximum power dissipation of the motor. As long as the average
dissipation deoes not exceed the motor rating, the motor will
perform without problems. Once the maximum limit is reached, the
motor may overheat and self destruct. One technigue for
increasing motor performance would simply apply a high voltage to
the motor at the beginning of each step. This makes the motor
react very gquickly to the change in phase signals. After a short
period of time, the wvoltage 1is switched to a lower wvalue,
allowing the motor to continue its motion without overheating. A
second approach, known as a constant current design, senses the
amount of current flowing through the winding, and adjusts the
voltage applied to the motor to maintain the current at its
maximum rated value. At the beginning of a motion, the voltage
would be low, with a constant adjustment to a higher value as the
motor speed increases, and back EMF decreases the current draw
for a fixed voltage level. Another technique, known as chopping,
may also be applied to these driver designs. This approach
applies a voltage much higher than the rated value for a short
period of time. The voltage is then turned off for another time
period. This occurs many times per step, with the frequency of
switching known as the chopping frequency. This freguency may be
controlled by time, switching at a given rate, or it may be
controlled by sensing the current flow through the motor,
switching at a variable rate. The highest performance drivers
are usually designed as bipolar chopper circuits.

The user should consult design guides available from the wvarious
motor manufacturers for additional information.

97

HANDSHAKE PROTOCOL

A1l commands and data transmitted from the master processor to
the CY¥525 peripheral processor are sent asynchronously with
complete handshaking performed. The master processor waits for
the CY¥Y525 READY line to go HIGH before sending the active LOW I/0
REQUEST signal. The data may be placed on the bus at any time
prior to the HIGH-to-LOW transition of I/0 REQUEST. The data
should be stable on the bus until the CY¥525 RDY line goes LOW,
indicating that the transfer has been acknowledged and that the
C¥525 1is BUSY processing the command or data. The master then
brings I/0 REQUEST to
the HIGH state. The DATA ﬁgﬁﬁ 1 VALID DATA i
FER i ; fib g i

k
{.
next transfer can occur 2] OM DATA BUS :
as soon as BUSY/RDY e e

returns HIGH. The /0 f’ -

sequence described is RE@ | = ~ !

shown in Figure 10.7. Y \ Y
e -

BUSY/RDY _..::l—/ \-L_J_’J

Example 8080/85 Driver: ASCII mode operation Bit 7 of data used
as I/0 REQUEST strobe, Routine entered with ASCII in C-register,

SENDCHR
0069 DBED IN STATUS
006B E620 ANI READY
006D CA6900 JzZ SENDCHR ;WAIT TIL READY
o070 79 MOV A,C
0071 E67F ANI 7FH
0073 D3EC ouT DATA ;WITH I/0 REQ LOW
BUSY:
0075 DBED IN STATUS
0077 E620 ANI READY
0079 C27500 JNZ BUSY sWAIT TIL BUSY
007C 3EFF . MVI A, OFFH
007E D3EC OUT DATA ;1/0 REQ HIGH
008a C9 RET

Figure 10.7 Data Transfer Handshake Sequence

ASCl]
KEYBOARD

[

DATA BUS

; 1/0 REQUEST

7430 P
8-INPUT NAND RESET [f BUSY/RDY

Figure 10.8 Write Strobe Generator for keyboards without strobe.

98

In the example shown in Figure 10.9, the CY525 is operating in
the PARALLEL ASCII input mode. 1In this mode, bit 7 is alwavys
zero and b7 line of the CY525 data bus may be tied to ground.
Since the user will normally transfer hytes of data from memory
to the output port, the most significant bit of the data byte mavy
be used to generate the I/0 REQUEST strobe, thus allowing only
one 8 bit output port to suffice. The "SENDCHR" routine, shown
in Figure 10.7, demonstrates the coding used to achieve this. Of
course, a separate port line may be used to generate I/0 REQUEST,
if this is desired. If the (CY¥525 is operated in the
PRARALLEL BINARY mode, all 8 data bus lines are used, and a
separate I/0 REQUEST line is reguired. Note that in the example
shown, use 1is made of the fact that the data and the I/0 REQUEST
signal may be applied simultanecusly in parallel operation. If
Verify mode is to be used, all 8 bits of the data bus must be
free to operate bidirectionally. In this case, it is generally
best to make I/0 REQUEST and I/0 SELECT separate lines from the
data ports. See Timing and Control Information in section 7.

¥ 45011 MODE OF OFERATION OF
£1525 ALLOWS By OF DATA BYTE
TOSERVE AS L/0 RERUEST PULSE.
(SEE PROGRAM CODE)

P,

PORTS: *

A

BZS5
PROGRAMMABLE
/0 DEVICE By

= | Busy/roY

ASCIL/ BIM

F 1o sELECT

Figure 10.9 Example interface to C¥525 using 8255 PIO.

OPERATION OF SEVERAL CY525s
USING A COMMON DATA BUS

In systems where multiple CY525s are to be controlled by a host
computer it is possible to use one eight-bit port to establish a
common data bus for sending instructions to the CY525s. Each of
the separate RDY lines (pin 27) of sach CY525 must be monitored
individually and each I/0 REQUEST line (pin 1) must be activated
separately. This technigque effectively uses the IS0 REQUEST line
as a chip select (CS). A CY525 will ignore all bus information
if its I/0 BREQUEST line is inactive. Note that On-the-flvy
gperations could restrict the sharing of the data bus between
multiple C¥525s,

89

FROM HOST . DATA BUS :%,

PROCESSOR
o 887
Ifo

SEPARATE 1/0 REQ g
|/ REQUEST 1/0 REGy
LIMES [HoREGZ

CY525y

Figure 10.10 CY¥525s share common data bus by using separate I,/0
REQUEST lines for chip select.

SYNCHRONIZATION OF TWO CY525s

Two CY525s, executing the same program, may be svnchronized as
shown in Figure 10.11. The master controller can control the
WAIT line of the slave CY¥525 via the BITSET or CLEARBIT commands.
The slave CY525 iz started first, with an EXECUTE command, and
executes a WAIT command and waits until the wait line (pin #38)
is driven low by the CLEARBIT command executed by the master
CY¥Y525 when it receives the (second) EXECUTE command. Both CY525s
then proceed to the next
instruction and are
synchronized as shown in Figure
10.11a, to within approximately
| 10 microseconds. Note that
STEP INH when the two programs are not
i i identical, the master can also
| wait for the slave to execute
i i its own CLEARBIT instruction,
i : and thereby achieve a more
r“*m”“&"ﬂ general synchronization.

PULSE,

PULSE 2

a.) Timing Diagram

P ———
£ : MASTER SLAVE

: DROG OUTPUT, T WAIT2 PROGRAM PROGRAM
i | WAIT PROG QUTPUT Cl] — uj

TE G 8

|CcY525 : a2

i ¢ pULaEl CY525; i1

! I sTEP INHIBIT2 %@‘;

siis

STEP INHIBIT, G]PuLsez IDENTICAL PROGRAMS
b.) Hardware =.) Socftware

Figure 10.11 Svynchronization of two CY525s.

100

COORDINATION OF MULTIPLE CY525s

Multiple CY525s may be synchronized to each other by use of the
Programmable Output line, the Wait functions, Dowhile signal, and
time delays. These may also be combined with other signals, such
as Direction, Slew, or Motion Complete, used to select the point
in the motion when the signal is presented to the waiting
controller. Consider a general parts handling function in which
the part must be handed off between two controllers. The
geometry of the parts and the arms used to carry the parts
requires that the hand off be carefully synchronized between the
two controllers. The one to receive the part waits at the
receiving position until the CY¥525 which has the part signals
that it has arrived. The two arms then move together in a
coordinated motion, reaching a point at which the distance
between them is a minimum. The part is exchanged and the arms
move apart, again in a coordinated motion. Once a certain
position is reached, the arms are free to move independently, and
continue with their assigned programs. If the motion is
repetitious, both controllers can work with the same program,
always being resynchronized at the hand off. The following
program illustrates such a motion.

A 0y Declare current position as home

R 120}

S 25} :Define stepping parameters

F 5

F 1i Move to the receiving position

E} Define hand off program

Uy Wait for a part to arrive

P 0) Arms move together to handoff position.
+} Change direction

Cy Activate mechanism to transfer part

D 90) Delay for part to actually transfer

P 14} Move apart, back to receiving position
D 90} Delay for part to stabilize, arms apart
P 108) Transport part to next handoff position
-} Low DIR & PROG OUT indicates part arrived
P 122} Move together with receiving arm

Bj Release mechanism which holds part

D 90) Delay for part transfer to receiving arm /
P 108} Move apart, back to receiving position i/
D 90} Delay for part to stabilize, arms apart /
R 20) Change step rate to slower rate

P 0} Move empty arm back for next part

P 14} Stay at the receiving position

R 120} Change rate back to faster rate

T 0} Repeat program if Dowhile low

2 Else stop program

0 End of program

X3 Execute program

Figure 10.12 Synchronized part transfer example. \\Hxh

101

EXAMPLE PROGRAMS AND WAVEFORMS

-
' REPEAT PREGRAM
e BRI
MOTICN ! ’ :
chietere | [O O
B ©,® jolo) 2 @ ©
PRCG 4 ‘\k = #
cuTayT ’ . ‘ k\r’/ \L _
(U :
WaIT r I
STEP INHIBIT i I [—-ch.s-seu: —
[&MHz KTaL)
The timing seguence for a typical program
is shown in Figure 10.12, In this
R 80, example, the first-rate wvalue, rate, and
F 10} number of steps are present before
g;l} entering the program-entry mode via the

Figure 10.13

"E" command. These parameters are chosen
to allow easy observation of the outputs
using the test/demonstration circuit
shown in Figure 10.2. The program
entered sets the programmable cutput (pin
#24), then takes three steps, clears the
programmable line, and waits for the WAIT
line (pin #38) to go low when the wait
UNTIL instruction is executed. &s shown,
the STEP INHIBIT line has gone high, and
the CY525 waits for this line to go low
before stepping. The three-step motions
are done one step at a time, using the
LOOP command and a time delav between
each step. The time delay is used to
create a very slow step rate, which can
be more easily observed. If the Dowhile
line (pin 28) is low when the Til command
is executed, the program will repeat from
the beginning. When pin 28 is high, the
program stops and the CY¥525 returns to
the Command mode. Two program loops are
shown in the waveforms.

Sample Program and Timing Diagram.

102

Figure 10.14 provides timing relations for a command sequence
that inputs the parameters and executes a "G" command to begin
stepping. The I/0 REQUEST, BUSY/RDY, and INSTROBE signals are
related to the data bus and several outputs are shown as a
function of the STEP INHIBIT input,

COMMAND MODE INPUT SEQUENCE:
R B0, set RATE = 80
S 255) set SLOPE = 255
F 10y set FIRSTrate = 10
N 4) set NUMBER of steps = 4
Gy GO, begin stepping
G G}

I/ REGUEST w
ausy/ ROY ~A

WoTIOH COMPLETE

.] |
h S J
F3 ______L________ L——

Figure 10.14 Timing Diagram for Commands.

1

!

The use of the "loop TIL" instruction is illustrated in Figure
10.15. The PROG/LIVE and RUM ocutputs are also shown as a
function of the "Q" and "X" commands and the "@" instruction.
The program loops until the DOWHILE line {(pin #£#28) goes high,
then fetches the next instruction. The effect of the STEP
INHIBIT input on the MOTION COMPLETE ocutput is also shown.

103

PRGG

EUM

| .

(i ﬂ'. CATLCAN CHANGE I',

1i3 REQ

wea | L]
RAETION COMPLETE]'_ U l._ll I|-

PLLSE

STEPR IMHIBIT Iul ||_ || ‘ || ! i
) T \ !
0O WHILE 1 ! | ! o
| | / ! |I |I
PROG OUTPUT ,--i | I] ": / I,e-‘] | \ . .'l
rrocram: ODEOOOE DEOGEOE DEEE
NOT TS SIALED
PRESET: () clear output line
R 90) set RATE = 90
S 200} set SLOPE = 200 Fp-——-—--=- Po | PRESET PARAMETERS
F 10} set FIRSTRATE = 10 .
N 3} set NUMBER steps = 3
ENTER PROG: E) - MAIN PROGRAM LOOP
E} set output line _
PROGRAM +) set CW direction P
~ ; i P TEST EXTERHAL
CODE Gy GO, begin EtEE_]Plﬂg P, - PnrAE L
Cp clear ouput line DOWHILE LDOP TIL TRUE
-} set CCW direction | N
G} GO, begin stepping \\\
= . 1
T (0) repeat above prog Til DOWHILE = HI]‘I"H : EXECUTE
’| Py | AFTER TEST
. s PASSED
B} set output line ra
C} clear output line P2’
@) exit run mode, enter command mode
QUIT: Q2
EXECUTE: X EXECUTE

Figure 10.15

Timing and Control for Program Entry and
Conditional Locping.

104

RS-232-C RECEIVE ONLY INTERFACE

When the user wishes to communicate with the CY¥525 over a serial
data link, a speclal data interface, such as the RS-232-C design
shown 1in this section, must be used. The main component of such
a design 1s the UART (Universal Asynchronous Receliver
Transmitter), which transforms the serial data from the data link
into the parallel form required by the CY525.

The design shown here is a "receive only" type, meaning that it
can only receive data, not transmit. This design will allow the
user to send commands to the C¥525, but will not allow the Verify
mode to work. Bidirectional communication through a UART is very
difficult with the CY525, because there is no direct control over
the I/0 SELECT line or the number of bytes to transmit from the
CY525. Those whe require the Verify mode must use a more
sophisticated design to contrel the handshake protocol during the
verify portion.

As shown in the schematic below, only two signals are needed from
the R5-232-C lines. Transmitted Data contains the data sent by
the host to the CY¥525, and Signal Ground is a reference for the
data line. Since signals on the RS-232-C interface are not TTL
compatible, the transistor circuit connected between Transmitted
Data and the UART acts as a converter, dgenerating the TTL
equivalent of the data signal for the UART.

The type of UART shown is a single, 40 pin IC. It was chosen
because the operating mode is set by connecting the control lines
either high or low. Other types of UARTs require a command word
to be written to an internal register which controls the mode,
something the C¥525 is not capable of doing. The type of UART
shown is made by several manufacturers, and is readily available.
The mode control lines should be connected so that the operating
mode of the UART matches that of the host system. This is very
important in getting data transmitted properly to the CY525.

Whenever the UART receives a character, the data available line
(DAV) goes high. This signal runs I/0 REQUEST, indicating to the
C¥525 that a command character is ready. As the C¥525 reads the
character, the INSTROBE signal is used to put the character onto
the CY525 data bus, by controlling RDE, which brings the received
data lines (RD1 to RDS8) to their active state. BUSY /READY,
connected to RDAV, then resets the DAV signal, clearing the I/0
REQUEST. Thus, the standard signals from the UART fully
implement the two-line data transfer handshake used by the CY¥525,

The rest of the circuitry is a baud rate generator. It creates
the clock rates needed to operate the UART at most of the common
data transfer rates. The 7404 and crystal circuit is an
oscillator which runs at 2.4576 MHz. This frequency is an exact
multiple of the popular baud rates used. The CD4040 is a CMOS,
twelve stage counter. It takes the 2.4576 MHz clock rate and
divides it through twelve binary stages, creating one half the
frequency of the preceeding stage in each case. The outputs are

105

labeled with the resulting data baud rate, although the actual
signal frequency is sixteen times this rate. The clock inputs of
the UART should be connected to the desired rate., It will do an
internal divide by sixteen, generating the data rate needed by
the interface.

b i

NP2 (WART. o
) - - NP

M3 4

IHK

TRAMSMITTED
DATA,

B 1Ok) = 7 Srrereili
:g 1= Mo Farity C= Farity . RDE
SEL__ ' 1=2StopBits 0= 15topBit— e RD1 G
‘Zz 3 . R T RIS
Eé' GROUND | 0,0 =5Bitfthar 0,1 =& Bit/Char —Jwpt ROz Wy
= 1,018t /Char. 1.1-88it/chor | __Jygs RD3 g
L= Even Parity O Odd Parity | ‘E‘ﬁ Rﬂg W&*
ceopf 7404 \ ST
LK —
.F;______
Q319200
ek sk €D4040 &el 5.0,
| F sl sa00 |
a ; 8¢ }——2400
2.457T6 MHZ 20pF A
o 1200
o). E—.
' Qg 00
Voo Ep 150 COMMELT CLOCKS
Ve g FOR DESIRED
R g" s BAUD RATES
[ResET ﬂu——————J

Figure 10.16 RS5-232-C Receive-Only Interface Schematic.

106

RS-232-C TRANSMIT/RECEIVE INTERFACE WITH CY232

The C¥232 Parallel/Serial Network controller enables the user to
both transmit and receive data from the CY¥525 parallel device via
a serial RS5-232-C port. The actual CY¥232 to CY525 interface is
very easy as shown in the schematic below. However, since the
CY¥232 gives the user the ability to address multiple devices on a
network, the CY2Z32 address lines should be tied high or low to
provide the CY525 with a specific address, and this address
should be used when writing to the C¥Y232/CY¥525. RAlso, multiple
CY5255 can be addressed this way by preceding each with a
separate CY¥232 with a different address or by connecting multiple
CY¥525s to a single CYZ232., 1In the second case, the CY232 address
decoding logic should be combined with the CY¥232 DAV to generate
a unigue I/0 REQUEST for each CY525 (see also Figure 10.10). The
C¥232 manual gives complete details on this interface.

LIKE

75 232-:{ T1ag3}——

|48 |

RODRE §
LIMES ie

DATA BLUS

Figure 10,17 CY¥Y525 connections to CYZ232.

107

PROM STAND-ALONE INTERFACE DESIGN

When the CY525 is to be used in specific applications, with fixed
commands or a small number of different programs, the user may
eliminate the need for a keyboard, which is prone to typing
errors, and the need for a computer, which may not be justified
for the application. By programming the CY525 commands into a
PROM or EPROM, a stand-alone design may be generated, in which
the program may be selected by switch position, and a push button
is used to get things going. The BUSY/READY signal from the
CY¥525 is used to advance the address counter of the PROM, and the
hardware automatically loads the commands, one byte at a time,
until the end of the program is reached. The end of program then
inhibits further program loading until the procedure is restarted
by setting the address to the front of a program again.

The circuit shown in this section is started by selecting the
desired program starting address for the PROM. With the 74193
counters, any address may be chosen by setting the counter inputs
and pulsing the load signal low. The schematic shows the load
signal controlled from the CY¥525 RESET, but a separate load
switch could be used. The outputs from the counters control the
address inputs to the PROM. Each address corresponds to a single
C¥525 command character, so the PROM should be organized as eight
data outputs per address. Many popular PROMs and EPROMs are
organized this way, including 2708s, 2508s, and 6309-ls. Enough
address lines must be provided to access the number of bytes
required by the program or programs. The design shows eight
lines, allowing for 256 bytes, but more could be added by simply
cascading additional 74193s.

When the starting address is loaded, the PROM will output the
first command byte to the CY525, so the data bus will have the
byte ready when the CY525 reads it. When the CY¥525 becomes
ready, with a high level on the BUSY/READY line, the 7400 nand
gate generates a low output to the CY¥525 I/0 REQUEST line. This
will tell the CY525 that a command byvte is available. The CY¥525
will read the byte from the data bus and then go busy, indicated
by a low level on the BUSY/READY line. This will generate a high
level on I/0 REQUEST, indicating that the byte transfer has been
completed. The same signal also clocks the 74193 counters,
advancing the PROM to the next byte location, and putting the
next command byte on the data bus. When the CY525 has finished
processing the last command byte, it will go ready again,
generating another I/0 REQUEST, and causing the CY525 to read the
next command byte.

The above procedure continues until the PROM address reaches a
value at which the data byte output is all bits high, OFFH. This
will generate a low output from the 7430, which will keep the
C¥525 READY signal from generating another I/0 REQUEST. The
circuit stops clocking at this point, and stavs frozen with I/0
REQUEST high and the 74193 counters set at the address which
contains the 0FFH byte value. No more bytes will be transferred

108

until the address is changed by another load pulse to the 74193,
This means that the user must end the program to be loaded into
the CY525 with a byte containing the 0FFH. HNote that the OFFH is
not read into the CY525, it is only used to stop the circuit from
advancing any further. Since 0OFFH is not a legal ASCII
character, i1t may be used to end the program without fear that
such a value might be part of the program, so long as the CY¥525
is operated in the ASCII mode. If the CY525 must be operated in
the Binary mode, and the program to be loaded must contain an
0FFH data value, some cther means of stopping the program must be
found. In this case, the best approach would detect the end of
program by a unigue address from the 74193 counters. This would
reguire the user to place the program in the PROM so that the
last program byte cccurs at the address just before this end of
program address. Note that the same logic now used will work if
the last address is 0FFH. In this case, the 7430 inputs connect
to the 74193 outputs instead of the data bus. The last byte of
the program should be at location OFEH, one before 0OFFH, since
the byte at location OFFH would not be read by the CY525. With
this scheme, the starting address of the program would depend on
the length of the program, and must be set properly before the
load pulse is given to the 74193, The design shown in the
schematic allows the starting address to be fixed, with the end
indicated by the O0FFH data byte wvalue.

SET SWITCHES T TERM|MNATE
STARTIMG ADDRESS
PUSH RESET To LOAD
f DowN 1400
» GHD
L
e [2 L R
= o_i_g [u;‘ﬁt : BNTE VALUE 2430
LD/D——{*] _ﬂl- ﬁ-l ; ;
RESET _alinin. Mg
L uiﬁ nP' A3] &
! lﬂqﬁF*
A ;
{ te A 0y
5 "mnk FE
= C i
2 ! b Qs Ar O
I P B ﬁj‘fiw]“‘
MR e
;“mf 1l T
’ L

Figure 10.18 PROM Stand-alone Interface

109

EEPROM STAND-ALONE INTERFACE DESIGN

The CYZ50 Local System Controller will allow the user to
interface the CY¥525 to an EEPROM for easy storage of often used
programs and for a stand alone system. The CY250 accepts serial
or parallel commands and can address either of two C¥525s via a
pass—-through mode, or accepts data as direct commands to its own
program buffer. Alternately, the command sequences may be
defined once and sent to the EEPROM, where the various command
sequences are stored as named procedures, with the CY¥250 taking
care of the EEPROM operation, space allocation, and name
directory. This allows freguently used programs to be remembered
by name and recalled whenever they are needed. For stand-alone
operation, the CY¥250 has an "auto recall” feature which calls a
specified routine from the EEPROM on power up or reset. This
EEPHOM interface has been implemented on the CY¥B-002 board shown
in figure 10.2. More details on the EEPROM interface may be
found in the CY250 manual and the CYB-002 manual.

PARALLEL INTERFACE SERIAL WTERFACE
T HDST l T
ll
| 5243 :
- CY525
€T
e |
4 ~ I EEPROM i
] [I
- i N~
Neoas [0S
E S :
5 CY525

Figure 10.19% CY525 interface to EEPROM through CY250.

110

11 COMPUTER CONTROLOFTHECY525 11
COMPUTER CONTROL OF CY525

The ability to control all of the C¥525 control inputs and
monitor all of the CY¥525 outputs allows the designer to exercise
the maximum control over the device. The following sections
present information that may be used as a guide to interfacing
the CY¥525 to a computer wia the use of programmable I/0 devices
such as the Intel 8255. The programs are written for the B080
microprocessor, but the general scheme will, of course, work with
any computer using two parallel B8-bit output ports and one
parallel 8-bit input port. For Verify mode, the data bus port
may be bidirectional, or replaced by a tri-statable output port
and another input port. The setup is as shown below:

STaTUS
- —

; HOST
i COMPUTER

N L S ey

COMTROL ;E

Figure 11.1 Example setup for Test/Display/Control of C¥Y525
Stepper Controller,

By using a loop in the host computer {(or in the CYS525) the user
can achieve a repetitive operation of the CY525 that allows easy
display of CY¥525 signals on a standard oscilloscope. The use of
externally triggered horizontal sweep circuits to synchronize the
scope display is particularly convenient. The MOTION COMPLETE
(INT REQ 1) output (CY¥525 pin 37) and the PROGRAMMABLE OQUTPUT
(pin 34) serve well as external triggers.

ENTER/QUIT PROGRAM MODE

A key feature of the CYS525 is the capability to accept and
execute sequences of instructions; i.e., stored programs. The
device powers-up in the "Command" mode of operation in which
valid instructions are executed as they are received. If the
ENTER command, "E", is given, the device initializes the relevent
(internal) pointers and prepares to accept the program entered.
All commands received prior to the receipt of the "Q" command are
stored in the program buffer in the order in which they are
received. Each command is entered just as in the command mode;

111

that is, the opcode is entered followed by either the "Linend"
character "}" (carriage return) or a delimiter and parameter
string terminated with the "}". The only command NOT terminated
with a Linend {(PDH) is the QUIT command, "Q"=51H. The Linend
should not be used immediately following the "Q"™ character. The
escape (QUIT) command terminates the program entry mode of
operation, and returns the svyvstem to the command execution mode.

The maximum efficiency in use

oo

of the CY525 may be gained by
presetting parameter wvalues

before entry and execution of | SOFTWARE
the program. All parameter Lmnmﬁmmn
values have their own storage = royd-= Ak
registers, so they need not s - LOADING
occupy program buffer space, £}

if the walues stay constant .

during program execution. The : |

host program may treat the a J

C¥525 program as a "Co-

routine" that can be passed a R h

set of parameters and invoked 55}

via the EXECUTE command. The Eij

host can then sample the RUHN Zz

DL'I.tPth {pln #32} or utilize I USE OF £Y525
this output in an interrupt PROGRAM AS
mode to detect program ¥ ﬁﬁgg
completion and load new EoCOMPLISNED |
parameters Or programs, as PARAMETER
appropriate. This mode of THE DETECTION Eﬁﬁ&?m
operation is particularly well el EXECUTION
sunited for inclusion in multi- MAY BE

tasking systems, when two or ﬁﬁﬂxﬁﬂw

more CY525s are controlled by $ﬂ¥ﬁ$r

a single host. MECHANIS M,

Fig. 11.2 CY525 used as "co-routine”

CY525 STAND-ALONE APPLICATIONS

The CY¥525 receives data and commands from an B-bit data bus. The
source of data in most cases will be from an ASCII kevyboard
during prototype development and a microcomputer in the final
system. The C¥525, of course, does not know or care where the
commands and data actually come from. This means that as long as
the handshake protocol is properly implemented, the commands can
be stored in a ROM, PROM, or EPROM and can be segquenced to
control the C¥525 with no host processor at all. For certain
limited repertoire machines and stand-alone applications, this
may be a very practical solution. A conceptual diagram of this
type of system is shown in Figure 11.3. See also PROM Stand-
Alone Interface Design in section 10.

112

e R R -:"‘ b
R WRITE f,é
STROBE | /o requesT
CIRCUITRY
|
S T § RS TR il
S UP-COUNTER :
;i ﬁ ROM 1) &
| ProviDES g CODE g &
" | ADDRESS 2 = g
Ei:w To ROM -3
il :
| couwt i
N CY525
- | BUSY/RDY
i

Figure 11.3 The C¥525 can receive commands and data from a ROM
seqguencer for many stand-alone applications not
reguiring a host microcomputer,

PROGRAMMING EXAMPLES

The following pages illustrate several programming examples,
including waveforms and program listings. Programs are all
written in 8080 Assembly Language, but the comments should allow
those readers who are not familiar with the 8080 to understand
what the wvarious subroutines are doing. The programs were used
on an SDKB0 board, with the CY525 included in the wire wrap area.

We start with an equate table, indicating how the CY¥525 was
connected to the SDKB80 I/0 signals. The names assigned to the
various signals are used in the other routines. The table is
followed by a Binary mode example, with the data buffer,
BINBUFFER, showing the exact data byvtes sent to the CY525 in this
program. All bytes except the OFFH at the end of the table are
sent by the SENDPARALLEL program, which is shown next. This
routine implements the basic data transfer between the SDKS80 and
the C¥Y525, illustrating an example of the handshake protocol
needed to transfer the bytes. It may be used in either Binary or
ASCII mode,. The ASCII mode example, which follows the
SENDPARALLEL program, sends the zame commands to the CY525 in
ASCITI mode as the Binary mode example shown previously, with
ASCIIBUFFER containing the ASCII data bytes sent by this program.
Finally, another Binary mode example is used to generate a
repeating oscilloscope waveform.

113

R TR EERIE R T i i

TABLE IX UATE TABLE AND B255 PORT ASSIGHMMENTS

£deak i

The CY¥525 is connected to B255-A4 ports 0ECH

to 0ZEH on the Intel SDES0 hoard. 8255 PIO

: Bo b= MOTIONCOMPLETE

; EQUATE TABLE By fe— puLsE

¢ B
00F5 = LEDS EQU 0FS5H ;TESTING LEDS OM PORT B=F5H - 2pe—RuN

H a 53""-'-PRC'G MODE
0001 = GREEN EQU 1 :PASS £ 84 la— prog ourpur
0002 = RED EQU 2 sFAILL ®
0004 = YELLOW EQU 4 ; IN PROGRESS ¥ T BUSY/ReADY

: & Bé g pirECTION
00EC = DATA EQU OECH ;PORT A IS DATA BUS ON Ad I
00ED = STATUS EQU OEDH ;CY525 STAT READBACK ON PORT B i

; Eo p—=1f0 REGUEST
0001 = MOTION EQU 1 :BO--MOTION COMPLETE &1 e v/0 sELecT
0002 = PULSE EQU 2 :Bl--PULSE OUTPUT .
0004 = RUNBAR EQU 4 :B2--RUN MODE PIH = [T Bownnt
0008 = PROGBAR EQU 8 ;B3--PROGRAM MODE PIN]
0010 = BITOUT EQU 10H ;B4--PROGRAMMABLE OUTPUT S 4l ppogT
0020 = READY EQU 20H ;BS5--BUSY/READY PIN oo
0040 = DIRECT EQU 40H ;B6--DIRECTION INDICATOR PIN g T CTERmAIBT
0080 = SLEW EQU 80H ;B7--SLEW INDICATOR PIN Co b it
. i —= RESET
00EF = A4CNTRL EQU OEFH ;CY525 INPUTS RUN FROM PORT C -
0000 = IOREQ EQU 0 :C0--LOW I/0 REQUEST DB,
0001 = NOIOREQ EQU 1 :C0--HIGH FOR NO REQUEST —
0002 = IOSELIN EQU 2 ;C1--LOW FOR COMMAND INPUT I Bk
0003 = IOSELOUT EQU 3 ;Cl--I/0 SELECT HI FOR VERIFY £ *3laeo8,

H L SR
0004 = DOWHILE EQU 4 :C2--LOW DOWHILE TO LOOP < DB+
0005 = NOLOOP EQU 5 ;C2--HIGH FOR NO LOOP 5 T bes

. ' g bt [P .

i = DB ;

[
0008 = ABORT EQU 8 :C4--LOW FOR ABORT
0009 = NOABORT EQU 9 :C4--HIGH FOR NORMAL STEPPING
000A = TRIGGER EQU OAH ;C5--LOW TO ALLOW STEPPING > PASS (GREEN)
000B = STPINH EQU OBH ;C5--HIGH STEP INHIBIT B b= FaiL (rED)

: Bt b—= TEST IN PROGRESS
000C = LOWAIT EQU OCH ;C6--LOW ON WAIT PIN -2
000D = HIWAIT EQU ODH ;C7--HIGH ON WAIT PIN &

: : — Ascil BN
000E = RESETLO EQU OEH ;C7--HARDWARE RESET ON LOW Ty
000F = NORESET EQU 0OFH :C7--HIGH TO RUN C¥525 g
0000 = CR EQU ODH ;ASCII CARRIAGE RETURN CODE [

BZ55 P10

S G R S R S R T S TS

114

BINARY DATA PROGRAMMING EXAMPLE

The binary data mode is illustrated by the programs and timing
diagrams that follow:

TESTBINARY :
00A8 11C300 LXI D,BINBUFFER
Q00AR CDD700 CALL SENDPARALLEL
RDYERROR:
00AE DBED IN STATUS
00BO E620 ANI READY
D0B2 C2EBO03 JINZ ERROR ;FALSE READY
TSTINTREQDL:
00B5 DBED N STATUS
00B7 E60L ANT MOT ION
00B9 CAAEOD Jz RDYERROR
£
00BC 3E01 MV I A,GREEN .
00BE D3F5 ouT LEDS
00CO0 C3AB00 JMP TESTBINARY
BINBUFFER:
00C3 4300 DB 'C',0 :CLEAR CY525 PIN 34
00CS 4200 DB 'B',0 :SET PIN 34 HIGH
00C7 520164 DB 'R',1,100 :SET RATE = 100
00CA 5301FE DB 'S',1,254 ;SET SLOPE = 254
00CD 460103 DB 'F',1,3 :SET FIRSTRATE = 3
00D0 4E020500 DB 'N',2,5,0 ;SET 5 STEPS
00D4 4700 DB 'G',0 :GO FOR 5 STEPS
00D6 FF DB OFFH : STOPPER
F

In the command mode, the
BUSY /RDY output remains low
after a G0 command 1s received
until the CY¥525 finishes the J
last of the "M" steps SEND
specified. This is indicated ﬁg@ﬁgh
by the END-of-MOTION (INTREQL)
output (pin 37). The RDY line -
returns high approximately 30
microseconds after the INTREQL
goes low. INTREQLl rises when
the next command is sent to
the CY¥S525.

(=) P
MaTioN l | @aﬁiﬂ
COMPLETE

ERROR

[sHouLD
HOT QLCUR)

BUSY/RD™ . 'tﬁm
Figure 11.4 End-of-Motion Timing. i REPEAT

115

BUSY/RDY

B 2

c @
1o rea] | L || send 'C',8,'B',P in

BINARY command mode

Z00.u5EC r-- Ose
PROGRAMMABLE QUTPUT —| Gors I/0 REQUEST to

trigger scope display
of Programmable Output
Figure 11.5 Binary Timing Example. (pin 34)

HANDSHAKE SUBROUTINE

The parallel ASCII data is sent to the CY525 Stepper Motor
Controller using the B080 SENDPARALLEL code shown below. In this
system the I1/0 REQUEST strobe is generated wvia a separate
programmable control line and is removed after the data is
acknowledged by the CY¥Y525.

SENDPARALLEL: ;ROUTINE TO SEND COMMAND BYTES TO CYS525

;DE = POINTER TO BYTE STRING, 0OFFH IS STOPPER

oooy 1A LDAX D ;GET WNEXT BYTE FROM BUFFER

00p8 FEFF CPI OFFH IS5 IT STOPPER?Y

00DA 8 RZ yRETURN IF STOPPER, ALL BYTES SENT

00DB 13 INX D ;UPDATE POINTER

Qopc 48 MOow Ceh

0o0pD CDE30O0 CALL SENDCHAR :5END THIS BYTE TO CY525

DO0ED C3DT700 JIME SENDPARARLLEL ;EEEP LOOPING TIL STOPPER
SENDCHAR : ;O0TPUT CHAR IN C TO CY525

J0E3 CBED IN STATUS

O0ES E&20 BANI READY ;LOW IF BUSY

OO0ET CAE300 JZ SENDCHAR sWAIT FOR READY

o0EA 7 MOV A,C

DO0EB L3EC ooT DATA ;PUT CHAR ON DATA BUS

J0ED ZEQ0 MVI &4, IOREQ

O0EF D3EF ouT ~ BACNTRL :LOWER I/0 REQUEST, DATA IS AVAIL
WAITBSY:

00F1 CBED IH STATUS

O0F3 Ee20 ANI READY

O0F5 CZFL00 JNZ WAITBSY sWALIT FOR BUSY (CYS5Z5 GOT DATA)

DOFB 2EO0L MVI A, NOIOREQ

DOFAR L3EF ouT AACNTERL RAISE IS0 HEQUEST

Q0FC 9 RET

Figure 11.6 Example command output subroutine.

116

ASCII DATA PROGRAMMING EXAMPLE
et J

BuUsY/RDY , l

FROG QUT

Figure 11.7

Expanded Handshake Timing Diagram.

CpB8)R 100} 5 2543 F 3) R 5) G}
50
BUSY/RDY {{ M_M
o
)
STEP ; STEP e
BULSE l t h | 5
x L
|
Lo
|: I
METICN COMPLETE s /’ “
ol
54
— | 1 _
PROG OUT ‘ —= > m3sC L
FeMHL r*_

Figure 11.8 Complete Timing for Sample Program.

¥
TESTASCII: sBSCIT MODE

OOFD 111A01 LXI D, ASCTIIBUFFER

0100 CoD?O0 CARLL SENDPARALLEL ;S5END THE COMMANDS IN THE BUFFER
ROYLOOP :

0102 DBED I S5TATUS

0105 E&20 ANT READY .

0107 CZEB03 JHZ ERROE ;SHOULD BE BUSY STEPPING
i

010a DEED IN STATUS

J10C E&QL ANI MOTIOHN

J10E CAG301 JZ RDYLOOPE ;WAIT FOR MOTION COMPLETE
i

0111 3EO0L MV I A,GREEN

0113 DIFS ooT LEDS ;LIGHT GREEM LED

0115 CAFDOQ JMP TESTASIII ; LOOR FOR SCOPE DISPLAY
ASCIIBUFFER: ;COMMAND STRING FOR CY525

Jlls 430D oe 'C',CR ;CLEAR PROGRAMMABLE OUTPUT (PIN 34)

J1Lla 420D Le 's',CR sPIN 34 HIGH

D1l1C 52203130 DB "R 100',CR sSET RATE = 100

1000
0122 53203235 DB 'S 234',CR ;SET SLOPE = 254
340D

0128 4620334QD e 'F 3',CHR : SET FIRSTRATE = 2

0Dl2Cc 4EZ0350D DB "M 5',CR ;5ET FOR 3 STEFRS

0130 470D e 'G',CR ;GO FOR 5 STEPS

0liz2 FF DB OFFH ;5TORPPER FOR SENDPARALLEL ROUTIME

Figure 11.9 Sample program.

117

OSCILLOSCOPE DISPLAY EXAMPLE

RESET u U
BOTION

COMPLETE

PROG OLT ’ ! ’ .

CORIGSTFFFI 3 M2508 2350

BUSY /RO ‘i“”ﬁ “’l“ “'li "lh" ”A “A , ‘ﬁ““h ”ﬂ-
PULZE ! fmSES -
- lMM-’ dampr |

Figure 11.10 Timing for Program Shown Below.

The 8080 (or equivalent) sends the following commands and binary
data to the CY525:

- reset CY525 using pin 4
LSRN clear programmable output (pin 34)
{used to trigger scope display)

'R' 1 64H set rate parameter = 064H
'S'" 1 FFH set slope parameter = QFFH
‘Pl O3 set First rate = 3

'W' 2 5 0 set number of steps = 5§
9 set CW direction (redundant)
G0 begin stepping

After sending the above commands, the host computer polls the
MOTION COMPLETE output (pin 37) and, upon finding it active,
after the 5th step has been taken, the host delays a fixed time
interval and then loops back, resets the C¥525 and repeats this

process. The programmable output may be used to trigger an
nscilloscope.

@ : ::J]::?ﬁu‘f}‘

TRIEGER

—= |NT REQ |

Y525 PROGRAMMABLE auUTPUT

Figure 11.11 Test Setup.

118

12 IEEE-488 INTERFACE 12

IEEE-488 INTERFACE TO THE CY525

Using only a few SS8I TTL gates, the CY¥525 can be made to work as
a "LISTENER" on the IEEE-488 or GPIB (General Purpose Interface
Bus). This section describes the timing and control invelved in
the GPIB interface and identifies the C¥525 signal names with the
appropriate GPIB signals. This implementation represents a
zsimple GPIEB interface. If a2 more complete bus interface is
reqguired, especially in a multi-instrument environment, the user
should employ a separate GPIB interface device between the C¥525
and the bus. This would allow the user to assign dewvice
addresses and communicate in both directions, using the CYS525
Verify mode. A4 suitable GPIB interface device would be
Fairchild”s 96LS5488.

GPIB HANDSHAKE SIGNALS

The "TALEER", or dewvice desiring to send 8 bits of data to the
CY¥525 over the data bus, uses the DAV (Data AVailable) signal
that corresponds to the I/0 REQUEST line on the CY¥525. Before
lowering the DAV line, the TALEER must test the NRFD (Not Ready
For Data) line. This line corresponds to the CY¥525 BUSY/RDY
line. When this line is low, the LISTENER (CY¥525) is Not Ready
For Data. When the TALKER finds the NRFD line high, it can
assert {(lower) its DAV write line to the CY¥525. Thus far, the
interface is identical to the standard CY525 handshake. The
third handshaking signal is an acknowledge line from the listener
named NDAC (Not Data ACcepted). This line must initially be low
and is raised to indicate that the data has been accepted by the
C¥525. The NDAC line 1is tested by the TALKER to determine
whether or not the LISTEMER has accepted the data. The CY525
BUSY/RDY line actually acknowledges the data transfer by going
low, thus by inverting the RDY line, an NDAC signal can be
generated. This completes the three line handshake required for
the GPIB.

D —————

1/C REG

E

ROY i
BUSY/RDY

__ |

\ﬁ4) : :

RDY |

1 DATA ¥

[BUS 3

Figure 12.1 CY525/GPIB Interface.

119

DATA LINES f——————- —(5 @)‘_“______

i

I
]
=
(|:“
N
R
j

DAY (DATA
BVAILABLE) | JTRuE

D
NRED
(NOT READY
FOR DATAY * ([e
NDAC s
(MOT DATA TRUE L i ié L_.__
ACCEPTED) * O)

-+

T Tz T3 T4

Figure 12.2 GPIB Handshake Signals.

The flowchart for the TALKER that controls the C¥525 is shown in
Figure 12.3. This procedure can be implemented simply using any
microprocessor and describes the manner in which most GPIB
interface devices function.

TALKER LISTENER

HE
MAFD A0 KOAL

HIGH? 1
§ MO EAROA
FUT KEW DATA
0N 010 LINES
! END .
| e -
o
CELAY FOR DATA ____,J'-y.i'-.“_‘_,:':"-“"f
TOSETTLE 5 A o

SET MOAC LOW

Figure 12.3 TALKER/LISTENER handshaking procedure.

120

GPIB INTERFACE MANAGEMENT SIGNALS

In addition to the three line handshake, there are sewveral other
control lines defined by the IEEE-488 interface specifications.
These are described below and identified with appropriate C¥525
signal lines.

IEEE-488

RESET (pin 4)

—
— }471[][] msac

Interface Clear goes low after power on. This line is
used to reset the CY525 and can replace the power on
startup circuitry.

SRQ MOTION COMPLETE

—— LJ or RONW

#1...END OF MOTION

#2...-—-{)&-— RUN

Service Reguest is used to inform the TALKER that the
LISTENER (CY525) has completed an action and is ready
for more commands.

ATN I/0 REQUEST=DAV
—] I I/0 REQUEST
ATN {(pin 1)

The Attention line is used to signifyv that the data on
the bus is a device address. For multiple CY525s this
may be used for selection. The ATN line should inhibit
the CY525 I/0 REQUEST line. Note that ATN may also be
used to prevent the C¥525 from seeing line feeds (0AH)
sent after linends (0DH) as is done by many BASIC
language controllers. ATMN may also be used to inhibit
other interface commands to which the C¥525 cannot
respond.

121

IEEE-488 TALKER SENDS CY5Z5 STEPPER MOTOR

COMMANDS TO CY525 CONTROLLER RECEIVES
COMMANDS
(e, [owma) | BT ——
__ I/0REa la
() & 1
NRFD BUSY/RDY
N 2T |
NDAC |g 4 :
576 | INT REGL
37
IFC RESET H
=

N

DIO 1-B <DATA BUS - \NVERTED BY |NTERFACE

=
ey

12-19

Figure 12.4 Simple IEEE-488/CY525 Interface.

In some systems the REN (Remote ENable) and EOI (End Or Identify)
IEEE-488 control signals may be useful. For further information
on the IEEE-488 interface the reader is referred to the following
references:

IEEE STANDARD 488 - 1978
available from
IEEE Service Center
445 Hoes Lans
Piscataway NJ 08854 USA

PET and the IEEE 488 RUS
by Fisher and Jensen, 1980
Osborne/McGraw Hill
630 Bancroft Way
Berkeley CA 94710 TUSA

122

GPIB SCHEMATIC EXAMPLE

The following pages illustrate the logic used in an actual
project which connected the CY525 to the IEEE-488 bus, using the
Fairchild 96LS488. The schematics indicate general data flow,
handshake control logic for bidirectional data transfers, and
interrupt logic to control stepping and detect when a limit has
been reached. Such a design supports many functions of the GPIE,
and allows several CY525s or other GPIB instruments to reside on
the same bus. This design is included with the permission of
Christopher R. Hansen of the Mavo Foundation.

CRE

=
‘_JI
1/0 SELECT - /

TXST

1/0 REQUEST

BUSY/RDY

TARDY

Figure 12.5 Timing for Talker addressed.

0.0 MM
Il
||| —
B0 F KTALI
I 5
h& 1 i
S04 ATALZ
2 Tk 2.TK EErET

3

Figure 12.6 Clock and Reset Logic

The figure above shows the implementation of the clock inputs for
both the CY525 and the 96L5488 from a single crystal, and a
manual reset. It also shows the timing for the handshake
circuits when the CY525 is asked to output its values from a
Verify command.

123

MODE §o 3.

am.qa@_
.': Ras

ADDRESS [o ook

H

. Toram
- Moser

Eﬁﬁ?ﬂﬁ

+ Eu
G_J
R
39
27
— §32 |

—iils |

2 Lﬁﬁ"_i'v'éj T) [o TV I | V1)
3 i — COW LIMUIT
- UNUSED
- Og

Figure 12.7 Data Paths

The data path schematic illustrates general data flow between the
GPIB, the 96L5488, and the CY525. All control signals from the
GPIB connect directly to the 96LS488, which interprets the
bus commands and controls the handshake logic to the CY525. The
eight data lines connect to the 9615488, and Ehrough 74LS240
buffers to the (C¥Y525. The buffers invert the data signals
petween the CY¥Y525, which uses positive logic, and the GPIB, which
uses negative logic. Two modes are used to read back information
from the C¥525, To read the internal parameters, using the
Verify mode, a normal GPIB read operation is performed, by making
the 96L5488 and CY525 the bus talker. To read back the states of
various CY525 control lines, the 96LS488 is asked to perform a
status read as a result of a poll command. Note that any eight
of the C¥525 signals may be connected to the status port.
Internal CY525 data and the status information are multiplexed by
the 74LS157.

124

.4 LS00
e - .._,_}
] 1
I o |
: } |
'l L5279

HREQ

: i
I
| |
| ! LS04
| |
I 1
I
| 1

LS20
J— 1 |
) 0UTREQ D—

v #SET L5123
Tt e . Fo® 2 m5EC

L5123 PULSE

L1204

:'q LS04

Figure 12.8 Handshake Control Logic

The handshake control logic is the key to connecting the C¥525 to
the 96L5488. This logic converts the appropriate signals between
the simple handshake of the CY525, and the more complex handshake
performed by the 96LS5488. By combining the various signals from
the 96LS488, the proper wvalues for I/0 Select and I1/0 Regquest are
generated. Much of this logic distinguishes between the Listen
mode (sending commands to the CY525) and the Talk mode {sending
data from the CY¥525). This enables the Verify command to be used
with the GPIB design. The C¥525 Busy/Ready signal is used to
complete the handshake between the CY525 and the 96LS488.

125

33] DIRECLTION
_— e .
CW LIMIT : D_ |
I
il N
' |
I
; I
o] :' :D° - ;
Lssi | . :
- I : LE]
I ¥
CCW LIMIT } ! i
_________________ ao|erer
i [NI
L504]
e | e K
: 1K
]
F96L5488 P
; D
: L1574
iR |32 Clk d

stroy |
R

15]‘ 10

Figure 12.9 Interrupt Logic

The interrupt logic illustrates two functions. In the first, the
GPIB may be used to control the start of stepping. The 96LS483
Trig, CLR, and MR signals are combined and connected to the CYS525
Step Inhibit. This allows the GPIB master controller to stop any
stepping operations by issuing a Device Clear command. Stepping
may also be synchronized to other events by allowing the master
to start the stepping using a Device Trigger command. The second
function of the interrupt logic is to monitor the stepping
operation, and warn the master controller when a limit has been
reached. By monitoring the limits, a Service Request can be
generated when a limit is reached. The Step Inhibit is also
controlled by this process, keeping the CY525 from inadvertently
stepping too far. Service Requests are also generated by the
CY525 Motion Complete signal.

13 GETTING YOUR CY525 RUNNING 13

The following checklist will simplify getting your CY¥525 up and
running.

1. Connect pins 7 & 20 to ground and pins 26 & 40 to +5 volts.
2. Be sure that pin 39 is low and pin 6 is high.
3. Set pin 36 high (ASCII mode), set pin 20 low for now.

4, Be sure RESET (pin 4) is low for at least 10 milliseconds
after power stabilizes. The CY525 can be reset at any time.

5. Upon proper reset all outputs should be at logic 1 (>3V).
6. Observe the RDY line (pin 27) to be sure it is high.

7. Observe CLK/15 (pin 11 [_JL] 400 KHz with 6 MHz Xtal).
8. Place the "CLEARBIT" command "C" (=43H) on the data bus.

DEO
DB1
DBZ
DB3
DE4
DBES
DB6
DBEY

wwmwwnn
el = R o R O

9. Lower the I/0 REQUEST line {(pin 1).

10. wait for RDY (pin 27) to go low before bringing I/0 REQUEST
high. TIf using I/0 REQUEST strobe circuitry that generates
a2 low write signal when an ASCII character is placed on the
bus, be sure that your software detects low RDY line (Busy)
before looking for High RDY. If you are using a debounced
keyboard this should not be a problem.

11. When I/0 REQUEST is brought back high, RDY will return high.

12. Wait for RDY to return high before placing the RETURN code
{y=0DH) on the data bus.

pin 12... DBO
DEL
DB2
DRE3
DB4
DBS
DB6&
pin l19... DBE7Y

(LI T T |
=p=JeBal s o

=
2
=1

13.

14.

15.

16.

17.

18.

19.

20.

Generate the low I/0 REQUEST strobe until RDY goes low, then
return I/0 REQUEST high, as before.

Upon completion of the above sequences of steps, the
Programmable Output (pin 34) will go low.

Repeat steps B through 13, replacing "C" (=43H) with "B"

{=42H}. This "BITSET" command will cause the Programmable
Output (pin 34) to return high. All other outputs (except
RDY}) should have remained high during the above procedure.

Repeat steps 8 through 13, replacing "C" (=43H) with "-"
(=2DH}. This is the "CCW" command. The result of this
command will be to bring the DIRECTION Line (pin 33) low.

Following the CCW command with a CW command ("+" =2BH) will
again raise the DIRECTION line.

If you have reached this point successfully vyou should be
able to enter any of the commands and obtain the correct
responses.

Suggested sequences:

a. enter "E}" followed by "Q" and observe the PROG/LIVE
{pin 31) go low with "E}" and return high with "Q".

b. with STEP INHIBIT (pin 30) low, enter "A 0" followed by
"P 1}". The STEPPER MOTOR DRIVE SIGNALS, pins 21-24,
will be activated, and PULSE, pin 35, will go low and
return high, indicating the duration of the step. The
drive signals will change from step to step as the above
Seqguence is repeated.

C. raise the STEP INHIBIT line and enter the single step
sequence as in "b" above. MNothing will happen on PULSE,
or the stepper control lines, until the STEP INHIBIT
line is lowered.

d. vrefer to Figures 10.13, 10.14, and 10.15. Enter these
commands as listed and observe the outputs. Note that
LEDs on the relevant outputs are very useful.

After initial checkout is accomplished using ASCII input,

the user may place pin 36 low to select Binary. Read the
manual carefully for differences in the two modes.

128

CYS00

STORED PROGRAM
STEPPER MOTOR CONTROLLER

arrays.

ASCIH-DECIMAL OR BINARY COMMUNICATION
SINGLE 5 VOLT POWER SUPFLY

HI-LEVEL LANGUAGE COMMANDS

STORED PROGRAM CAPABILITY
HALF-STER/FULL-STEP CAPABILITY
ABSOLUTE/RELATIVE FOSITION MODES
FROGRAMMABLE VIA ASCI KEYBOARD

3300+ STEPS PER SECOND 16 MHz XTAL
PROGRAMMABLE OUTPLUT LINE

TWO INTERRUPT AEQUEST QUTPUTS

® & & & & & & & 9

PIN CONFIGURATION

- L
WE —a=d 1 40 pem— +5VOLTS
XTAL 7] o o VILTS
e == WAIT [PROGRAM)
AESET =iy CYSOO = |WT RED 1
UNUSED =l b TG ELE
ARNRT = p—s=— PLULSE
I / = CONTROL
R0 —— \ == ASCII/BIN
UNUSED — = LN [INT FEQ 2|
|RESERVED) ~=— S —*—PRIG
CLEA1G ——=—y STORED P=— TRIGEER
0B, —*= PROGR AM (e~ EXT DIRECTION
o g ¢
o - MOTOR VoL
05, —=] CONTROLLER [4.
og; == 4| STERPER
DB; —h'l '—"q:-a MOTOA
oA, == =2, [DRIVE
N oy I A=, SIGNALS

STANDARD FEATURES

The CY500 stored program stepper motor contraller is a standard
S volt, 40 pin LSl device configured to control any 4-phase stepper
maotor. The CY500 will interface to any computer using asynchronous
parallel TTL input and provides numerous TTL inputs and outputs for
auxiliary control and interfacing. The CY500 allows programming with an ASCII
keyboard for prototype development and allows sequences of hi-level type commands to
be stored internally in a program buffer and be executed upon command. The TTL outputs
sequance the stepper drive circuits that consist of standard power transistors or transistor

HARDWARE/SOFTWARE DIRECTION CONTROL
HARDWARE/SOFTWARE START/STOPR

"ABORT CAPABILITY

SINGLEMULTIFLE STEF INSTRUCTIONS
RAMP-LIF/SLEW RAMP-DOWN MODE

24 INSTRUCTIOMNS IN SET

TRIGGERED OFERATION

‘DO-WHILE" COMMARND

WAIT-UNTIL COMMAND

SEVERAL SYMC INPUTS AMND QOUTPUTS

LOGIC DIAGRAM

LI I T I T R T T

5 VOLT
s -
_ STEPPER
WR STROBE ——=6 4) CONTAOL
PESET - P
BUST/READY ~a—p4
oot E —p.--TEl[iISLIIE:I |
INT RE
CONTROL __ :) OGP] ™ MOTION COMPLETE
E'?j s INT RE[} 2 |ALIN]
EXT.OIR, —p=g AEL PUSTION PROGAAM COMPLETE
EXT. START/STOP ——fmd [T PROG ENTRY
DO-WHILE —— g —rn
ABORT ——fmg L 1 7T
THIGGER e PROGRAMMABLE
WT UHT.lL DUTPUT
ASCI/BIN

Cybernetic Micro Systems

129

arrays.

position,

The CY512 intelligent positioning stepper motor controller is a
standard 5 volt, 40 pin LS| device configured to control any 4-phase
stepper motor. The CY512 will interface to any computer using parallel
TTL input and provides numerous TTL inputs and outputs for auxiliary
conirol and interfacing. The CY512 allows sequences of hi-level type commands to
be stored internally in a program buffer and be executed upon command. The TTL outputs
sequence the stepper drive circuits that consist of standard power transistors or transistor
When absolute position commands are executed, the CY512 automatically
determines whether it is necessary to move CW or CCW to reach the specified target

STANDARD FEATURES

ASCIH-DECIMAL OR BINARY COMMUNICATION
SIMGLE 5 VOLT POWER SUPPLY

25 HI-LEVEL LAMGUAGE COMMANDS
STORED PROGRAM CAPABILITY
HALF-STEF/FULL-STER CAPABILITY
AFSOLUTE/RELATIVE POSITION MODES
PRCOGRAMMASLE VIA ASCH KEYBOARD
B000+ STEPS PER SECOND (11 MHEz XTAL)
PACGRAMMABLE OUTFUT LINE

TWO INTERRUPT REQUEST QUTPUTS
MORE LINEAR BAME THAN CYS0D
HIGHER RATE RESOLUTION THAN CYE00

SOFTWARE DIRECTION COMTROL

* HARDWARE/SOFTWARE START/STORP

= ABORT CAPABILITY

= AUTOMATIC DIRECTION DETERMINATICON
= RAMP-LIF/SLEW/RAMP-DiOWMN

* VERIFY AEGISTER/BLUFFER CONTENTS

* STEF INHIBIT OPERATION

o OO-WHILE' AMND WAIT-UNTIL COMMAMDS
JUMP TS COMMARND

SEVERAL SYMC INPUTS AND OUTPUTS
SLEWING INDICATION CQUTRPUT
TEAMINATE STEPLINE FORMAX ACCELERATION

" ® % ¥ &% & & & & & & BB

PRACGRAMMABLE CELAY

PIN CONFIGURATION

R il
1/ REQUEST —med 1 40 pm— =5 VOLTE
ataL{] = ﬁgﬁﬁnﬂm
L e
reset —= (CYBH12 | orion comeiere
UNUSED —— Lst— ASCH/BIN
TEAMINATE/ABORT —mf L FIITSE
_— = PROGRAMMABLE DUTPUT
INSTRDBE —— —s=DIRECTION
UMLSED — = TIN [INT RE(2]
QUTSTADBE —=— —=— FROG
CLE/ 15 —e=—1 INTELLIGENT -'I—EIHHFBII'
08;~={ POSITIONING [=SLEW
08, =-=f STEPPER [DO-WHILE
UBE-—!—"— MOTOR bt B LIS READY
(1, - pm— 45 VLTS
T CONTROLLER L UnusED
(1E ey —== 2 STEPPEA
ﬂﬂﬁ-‘—"- == i[> MOTOR
08, == e 22 DRIVE
1 a1 =g, SIGNALS

Cybernetic Micro Systems

130

& & & % w»

LOOP COMMAND WITH REFETITION COLUNT

LOGIC DIAGRAM

45 VOLT
PARALLEL
DATA BUS STERPER
170 REQUEST i 4 > CONTAOL
INSTROBE —g—fe | PULEE
OUTSTROBE e | GLEW
m 1 s [||RECTION
T S T
BUSY/KEADY MOTION COMPLET
_ASCIEN Pa = INT REQ 2(FUN|
70 SELECT —— PROGRAM COMPLETE
D0-WHILE ﬂ"_"\;__“" . | PROG ENTRY
TERMINATE ABOAT EACTOR . stose | ™ 25 xTaL
STEP INHIBIT PROG FTR i —
WAIT UNTIL =y | == PRDGRAMMABLE
gEE[:uFut i guTPUT
XEG,

ASCII-DEICIMAL_ TO HEX CONVERSION TABLE

DEC HEX | DEC HEX DEC HEX DEC HEX | DEC HEX ASCII HEX
0 00 51 33 102 66 153 99 204 cC CR 0D
1 01 52 34 103 67 154 9a 205 CD SP 20
2 02 53 35 104 68 155 9B 206 CE + 2B
303 54 36 | 105 69 156 9c | 207 CF ., 2c
4 04 55 37 106 6A 157 9D 208 DO - 2D
5 a5 56 38 107 &B 158 9E 209 pl
6 06 57 39 108 6C 159 9F 210 D2 0 30
7 07 58 3a 109 6D 160 AD 211 D3 1 31
8 08 59 3B 110 6E 161 al 212 D4 5 32
9 09 60 3C 111 6F 162 A2 213 DS 3 33

10 O0a 61 3D 112 70 163 A3 214 D6 4 34
11 0B 62 3E 113 71 164 A4 215 D7 5 135
12 oc 63 3F 114 72 165 AS 216 D8 6 136
13 0D 64 40 115 73 166 A6 217 D9 7 37
14 OE 65 41 116 74 167 A7 218 DA 8 138
15 OF 66 42 117 75 168 AB 219 DB 9 39
16 10 67 43 118 76 169 A9 220 DC
17 11 68 44 119 77 170 an 221 DD A 41
18 12 69 45 120 78 171 AB 222 DE B 42
15 13 70 46 121 79 172 AC 223 DF C 43
20 14 71 47 122 7a 173 aAD 224 EO D 44
21 15 72 48 123 7B 174 AE 225 E1 E 45
22 16 73 49 124 7C 175 AF 226 E2
23 17 74 4A 125 7D 176 BO 227 E3 P46
24 18 75 4B 126 7E 177 Bl 228 E4 G 47
25 19 76 4C 127 7F 178 B2 | 229 E5 H 48
26 1A 77 4D 128 80 179 B3 | 230 E6 I 49
27 1B 78 4E 129 81 180 B4 231 E7 J 4R
28 1cC 79 4F 130 82 181 B5 232 EB
29 1D 80 50 131 83 182 B6 233 E9 K 4B
30 1E 81 51 132 84 183 B7 234 EA L 4cC
31 1F B2 52 133 85 184 B8 235 EB M 4D
32 20 83 53 134 86 185 B9 236 EC N 4E
33 21 84 54 135 87 186 BA 237 ED 0O 4F
34 22 85 55 136 88 187 BB 238 EE
i5 23 | 86 56 137 89 188 BC 239 EF P 50
36 24 87 57 138 BA 189 BD 240 FO Q 51
37 25 88 58 139 8B 190 BE 241 Fl R 52
38 26 89 59 140 8C 191 BF 242 F2 | K
39 27 90 5A 141 8D 192 CO 243 F3 T 54
40 28 91 5B 142 8E 193 C1 244 F4
41 29 92 5C 143 8F 194 C2 245 FS U 55
42 23 93 5D 144 90 | 195 C3 246 F6 vV 56
43 2B 94 S5E 145 91 196 C4 247 F7 W 57
44 2C 95 SF 146 92 197 C5 248 F8 ¥ 58
45 2D 96 &0 147 93 198 C6 249 F9 Y 59
46 2E 97 61 148 94 199 C7 250 FA %z 5A
47 2F 98 62 149 g5 200 C8 251 FB
48 30 99 63 150 96 201 C9 252 FC
49 31 100 64 151 97 202 CA 253 FD
50 32 101 65 152 98 203 CB 254 FE

255 FF

131

Stepper Motor Controller

Selection Guide

Cy CY CY C¥y CYy CY CY cC¥Y
500 512 525 545 Function 500 512 525 545 Function
2K 5K 10K 27K Max Usable Step/Sec Program Features
64K 64K 64K 1.6M Max Number of Steps ¢ e e ListProgBuffer Contents
21 25 26 28 Number of Instructions ® ™ o Display # of Steps Param
18 48 60 64K Program Storage (bytes)] . e Display Accel Parameter
Exp Exp Lin Lin Accel (Exponent/Linear) o e e Display Step Rate
- [] e Display Current Position
Motor Support] e Display Val of Ext Inputs
« o e Pulse & Direction Qutput « o e # Stored Prog Execution
» . . 4-phase Output ® ® e Conditional Prog Structure
e e e 0 2-phaseCompatible e e o Programmable Time Delay
o o o 3-phase Compatible 256 256 B4K Program Repetition Count
e e o o 4phase Compatible = @« o Unconditional Branch
[} 0 0 5-phase Compatible 1 1 1 16 Programmable /O Lines
¢ @ * e Full Step L Program Labels
.) o] o Half Step .]] e Multi-controller Sync
0 o Quad Step =) Live Cmds During Prog Exec
o Micro Step -
e o o e Single Step (Jog Mode) Motion Features o
o o e e Continuous Stepping o o e e Programmable Start Rate
e e # e ConstantRate stepping e e e o Programmable Slew Rate
. @ . ¢ Hamped Stepping o o 3 e Program. Accel/decel Slope
e Low Power Standby s @ ® e Software Direction Control
e Motor On/OFf Qutput @ o e Automnatic Direction Finding
oo o e Limit Detection o ® ® e Program. Num of Steps
e Home Seek Command
Command Interface e e e Absolute Position Stepping
e Serial Interface e o o Relative Num of Steps
¢ o o @ ParalelInterface « o o o Emergency Stop/Abort
e e e o EBinary Data Structure « o e Decelerating Stop/Abort
s e o o ASCl Data Structure e e e o Steplinhibit Input
. . . Internal Stored Program e o Closed Loop Rate Control
L e External Stored Program e External Direction Control
& o o e Direct Command Mode ¢ Motion Complete Indicator
! o Thumbwheel Input Support . e Slew Indicator
|— e External Display Support e« e 0 ProgComplete Indicator
L a} @ Stand Alone Operation - External Jog Maode
o Yes] On-the-Fly Rate Change

To a Degrae or with Additional Work

On-the-Fly Position Qutput

132

Tecmar/Scientific Solutions Support Software

The CY525 Stepper Motor Controller has been interfaced +to the
IBM-PC/XT/AT bus by Tecmar/Scientific Solutiocns, TIne. wvia the
dual axis PC MATE Stepper Motor Controller. In support of this
product, Cybernetic Micro Systems, Inc. provides a "Stepper Motor
Control Panel" software interface that is described in this
section. The multi-window control panel allows easy keyboard
programming of two CY525 Stepper Motor Controllers with immediate
visual feedback of status information from a dual axis display.
The Control Panel Software consists of two parts:

T
i
2

e e e
y O i

IBM-PC/XT/AT |
.. | Keyboard Driven g
i | visual Software ??

<2°§%ﬁﬁﬁﬁgﬁﬁﬁﬁ%§%@$§? .
i

CY525 (x2)
Driver i
Subroutines ?

: po L e
R

The Keyboard Driven Visual Interface maintains a status window

and a register window for each C¥525. The register window for
either axis has the following appearance:

Reglsters

Msteps 0005
Rate i
ist Rate 03
Slope Q1
Divisor oO1
X = Q1250 The "X" value is in decimal

representation. All other
values are in hexadecimal.

In addition to the register values, several status lines are
monitored as shown below:

Status

Direct Cb
I0_stat Rdy
Running NO
Slewing NO
Control HI
Frogram OFF

The interpretation of the lines is as follows:

Direction (pin 33) CCW = CounterClockWise stepping
CcW = ClockWise stepping
I0 Status (pin 27) Busy = CY525 is not ready for command
RDY = CY525 is ready for command
Running (pin 32) NO = C¥525 is not executing a program.
YES = C¥525 is executing stored program
Sléwing (pin 29) NO = CY¥Y525 is not slewing
YES = CY¥525 is stepping at constant hi
speed selected by rate command
Control (pin 34) HI = Programmable output after "Bj"
Bitset command
LOW = Programmable output after e

Clearbit command

Program {(pin 31) OFF CY¥525 is in command mode
oN = C¥525 is in Program entry mode

The Contrel Panel Display provides both register wvalues and
status for each C¥525:

rReglesters Cyv323 X Status Fegisters WDED Y Btatus
Mthﬁw G000 | | Direct CW % Neteps 00O ! Direct CW
Rate T f f i0_stat Rdv | Fate s i I =tat Rdw
iet HdtH fq PP Funning HNO | st Hate O2 b Runming MO

| Slope ‘ Slewing MO f Sl oos o]] | Slewing MNO
i D1 viaar (Control HI ; 1 Divisor o1 1 Cantrol HI
X = 1250] Frogram OFF | | ¥ = 00000 | ! Frogram OFF

In addition to the status display window there is a "Next Commang"
window and a "Last Command" window. The next command window
contains a prompt sign that indentifies the axis (X or ¥) and the
programming status of the selected controller. There are four
possible combinations:

¥> CY¥525-X is ready for next command
¥> C¥525-Y is ready for next command
X< Enter next program instruction into C¥525-X buffer
¥< Enter next program instruction into Cv¥525-¥ buffer

The ctrl-W command will toggle between C¥525-X and C¥525-Y as
evidenced by the changing prompt.

A=2

The "Next Command" window allows rubout editing until it is
terminated by the ENTER key (carriage return). When the carriage
return is issued, the "Next Command" contents are sent to the
selected CY¥525 controller. As each character in the window is
transmitted to the CY525, it is erased and copied into the "Last
Command" window, as a record or reminder of the previous action.

The CY525 Program Entry Mode
The Control Panel initially displays the default status of both

CY525s. 211 Register wvalues are random, however the Status
values should be as follows:

Direct Cu
I0_=tat Rdy
Running NO
Slewing NO
Control HI
Frogram OFF

Before any other steps are performed, the Control Panel can be

tested by issuing the following commands: By, Cy, =), +), and
ctrl-w. The relevant status signals should change when each
command is issued. (The Control Panel program assumes that the

Tecmar board is set to port 300H.)

If the above commands indicate that the C¥Y525s are alive, then
the register should be initialized via commands similar to the
following:

F 3 set first rate

R 10) set rate of stepping (at slew or max rate)
s 1; set slope parameter to steepest accel slope
Z 1y set slope divisor

N 1; set number of steps to take

A 0 set position to origin (zero on axis)

After the registers have been initialized, vyou can tell the
selected stepper to step to location 1250 (decimal) by typing:

P 1250}
Note that the status signals reflect the action. Finally, vyou
can use E)} to Enter a program and Q (no <cr>) to Quit entering
the progran. The commands X} or J 0} will execute the program.

With the Control Panel software both CY525s can be programmed and
both controllers can be made to execute their respective programs
at the same time, with continual status display.

As an example of C¥525 program entry and execution, the following
can be entered (after the registers have been initialized.)

E) Enter the following:

c Clearbit (Control =-> 0)

P 1250} step to position 1250

B) Bitset { Control -> 1)

P 0} step to position 0

J 0) jump to location 0 and repeat
QX) Quit entering and eXecute program.

A typical Control Panel display screen is shown below:

Ganaral Into Registers OywS25 ¥ Status Registers LCv323 ¥ Status
ﬁtr‘] =l XA 1 ! Nstepe 0005 Birect CW Msteps Q0HI3 | [Direct CW
Dtri-v DOS | ! Rate oC I0_stat Rdy Fata oE I0_stat Rdy
.......... i I 1=t Rate ©3 | Aunning MNOD st Rate 03 ‘ ‘ Running MO
coowrichi: i Slope L Siswing NO | : Slope 38 | Slewing MO
1785 by Ed | | Diwvisor Ot il | Control HI '} | Divisor 01 | Contral HI
“limgman.. | | X = 01245 ¢ ! Program OFF | | ¥ = ouood | | Fragram OFF i
| 1 - [- FEE | ——
I Uriver Code CwH525 ¥ program buffer CvS2% Y oroaram buffer
avail. fram —— -
Cybernetics EBytz & Hex Cods Command Byte # Her [Code Command
_— il ‘ i3
Last Comnands ol . . b . a f
= — | o2 .- .] oz .. . 5
= 1245 I 1 [v a - c Q% . . H
— o4 . . { 04 .- . i
Hext Command: o8 .- - [B e .- .
S 06 .. . | 04 .. ;
E"x} j o7 . - | o7 . i
| —

The interactive keyboard interface allows you to guickly apply
the CY¥525 controllers in your particular situation. After the
motion control programs have been worked cut, and the stepper
motors are behaving properly for your application, the Control
Panel 1is no longer necessary. At this point you may wish to
simply embed the CY525 driver software (without the display) in
your own application software. The C¥525 driver software 1is
available separately for control of the PC MATE {(TM) board.

For more information on the CY¥525 software support package,
contact Cybernetic Micro Systems at (415) 726-3000.

"PC MATE" is a registered trademark of Scientific Sclutions Inc.

I-0 Request/
Xtal 1
Xtal 2
Reset/

Unused £
Abort/ [

Gnd
Instrobe/
Unused
Outstrobe/
Clock/15
DBO

DBA1

DB2

DB3

DBa &
DB5 [
pBe [

DB7

CY352S Pins

it

e

S
CYETET

p

ooooo

= o o

ooooo

>>>>>

'U'ss i

-l @ = W -

|

38
38

.37

36
a5
34
33
32
3
a0
29
28
27
26

25 .

24

22.

21

T PEEEE

i

s
|
i

T HEEEEREL

e
e
o

Vee (+5v)
I/-0 Select

Wait (Program)
MotionComplete/
ASCII-Binary/
Pulse/

Program QOutput
Direction

Run/ {Int Req 2)
Prog/-Live/

Step Inhibit
Slew/

Dowhile
Busy/-Ready
+5v

Unused

Motor Phase 4
Motor Phase 3
Motor Phase 2
Motor Phase 1

CY3525 Summary

CY525 Commands

Absolute location specified
Bitset programmabile line high
Clearbit programmable line low
Delay milliseconds

Enter program code

Firstrate, beginning step rate

Go, step relative

Haltmode, for continuous run
Initialize

Jump to address

Loop to addr for count

Number of Steps

Oftset stepper drive signals
Position for stepping

Quit entering program code
Rate, maximum step rate
Slope of accel/decel

Til pin 28 low, branch to addr
Until pin 38 low, wait here
Verify internal register values
Wait for pin 28 to go high
eXecute stored program
Slope divisor for slower accel

CW direction

CCW direction

Resume Command mode
Label designator for jump/loop

R

sy

A
pa—

s S

B

PR R R SR

o miﬁﬂ‘%&'@:

R R S

TR
e

R A S R

SRR R R

I T
B R s

